КУРБЫШЕВСКИР АВПАЦИОННЫЙ ИПСТИТУТ на С. П. ЕОРОЛИТА ТРУЛЫ, БЫНУСК ЖЖ. 1907 г.

Вибрационная прочность и падежность двигателей и систем летательных аппаратов

 \mathcal{A} . Φ . ПИЧУГИН, Г. Н. НАДЕЖДИН, В. А. БОРИСОВ

О ВОЗМОЖНОСТИ ПРИМЕНЕНИЯ КОМПОЗИЦИИ М $\Phi+\Phi$ -4 В ПОДВИЖНЫХ УПЛОТНЕНИЯХ

В последнее время все большее применение в подвижных уплотнениях в качестве материала одной из пар трения находит фторопласт-4 (Ф-4) в чистом виде и с наполнителями. Известно, что Ф-4 имеет низкий коэффициент сухого трения по металлу, который при определенных условиях не превышает величины коэффициента трения пары «металл-металл» в масляной среде [1]. Однако низкий коэффициент теплопроводности фторопласта $\left(\lambda=0,2\right) \frac{\kappa \kappa a \Lambda}{M_{\star} 2 pad_{\star} vac_{\star}}$ [2] препятствует его применению в подвижных уплотнениях с большим тепловыделением, так как из-за резкого повышения локальной температуры на поверхности трения оболочка молекул разрушается и происходит схватывание Ф-4 с трущейся поверхностью. При этом сильно возрастает коэффициент трения и износ уплотнит гого элемента. Кроме того,

Работы по расширению области применения Ф-4 в уплотнениях обычно ведутся в двух направлениях: создание фторопласта с различными наполнителями (стекловолокно, стеклопорошки, асбест, алюминий, бронза, графит, дисульфит молибдена и др.) [3], и создание пористых материалов, пропитанных фторопластом (пористая бронза).

В последнем случае фторопласт, обладающий значительно большим коэффициентом линейного расширения, чем материал, при повышении температуры «выпотевает» и служит смазкой кон-

тактирующих поверхностей.

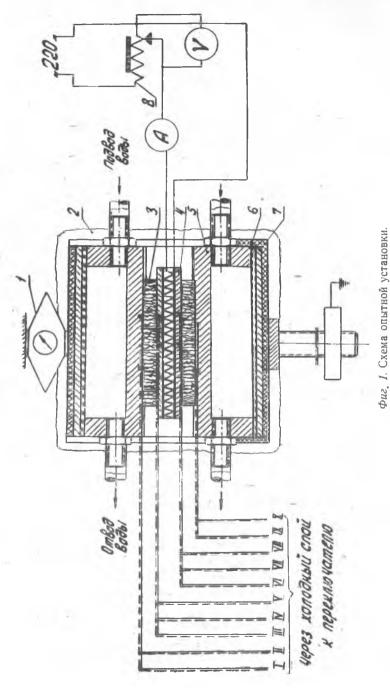
Ф-4 хладотекуч.

Однако испытания подобных образцов в институте Машиноведения АН СССР показали, что при сухом трении пленка фторопласта быстро разрушается, зерна бронзы начинают изнашиваться и закупоривать поры, сильно возрастает коэффициент трения и повышается температура. Затем происходит оплавление бронзы и в результате дело сводится к трению пары «металл-металл».

В отличие от пористой бронзы размер пор материала МР значительно больше. Кроме того, эти размеры, как и величину пористости, вообще можно легко менять.

Поэтому было решено исследовать образцы из фторопласта, армированного материалом MP, в связи с чем решались задачи определения коэффициента теплопроводности MP и композиции $MP+\Phi$ -4, коэффициента трения и интенсивности износа.

Определение коэффициентов теплопроводности материала МР и фторопласта, армированного МР


Пористые материалы рассматриваются как частный случай дисперсных сред.

Представление о теплопроводности дисперсной среды строится на основе анализа теоретических моделей структуры тела, из которых наибольшее признание получили модели Кришера и Бернштейна [4]. При этом вводится понятие об эквивалентном коэффициенте теплопроводности пористого тела $\lambda_{\rm экв}$, представляющем собой некоторую эффективную величину, промежуточную между коэффициентом теплопроводности основного материала и коэффициентом теплопроводности среды.

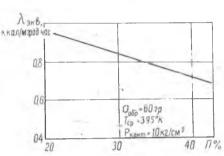
В зависимости от принятой теоретической модели структуры тела величина $\lambda_{\text{экв}}$ может меняться в очень широких пределах. Однако ни одна из упомянутых моделей не может быть применена для расчета теплопроводности материала MP. Поэтому приходится обратиться к экспериментальному определению $\lambda_{\text{экв}}$. Для определения $\lambda_{\text{экв}}$ был использован метод пластины [5].

Схема установки для определения $\lambda_{\text{экв}}$ образцов из MP и фторопласта, армированного MP, приведена на фиг. 1. Образец исследуемого материала 3 в виде пластины прямоугольной формы помещен между нагревателем 4 и холодильником 5. Нажимное устройство обеспечивает полное прилегание образца к холодильнику и нагревателю, а динамометр 1 замеряет усилие нажатия. В электрическую цепь установки входят амперметр, вольтметр и автотрансформатор 8. Расход воды, проходящей через холодильник, контролируется мерными колбами. Температура холодной и горячей поверхностей образца замеряется термопарами, которые с помощью переключателя поочередно подключаются к потенциометру $\Pi\Pi$ -1.

Если пренебречь потерями тепла через боковые поверхности (а они по сравнению с другими размерами при малой толщине пластины невелики), то температурное поле пластины можно считать одномерным. Тогда на установившемся тепловом режиме

11-1256

величина эквивалентного коэффициента теплопроводности определится по формуле:

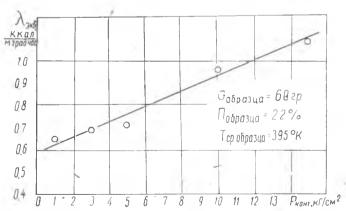

$$\lambda_{\text{SKB}} = \frac{0.86 \cdot I \cdot V \cdot \delta}{2F \cdot \Delta T}$$
,

где *д* — толщина образца;

F — теплопоглощающая площадь образца;

 ΔT — разность температур на горячей и холодной поверхности образца.

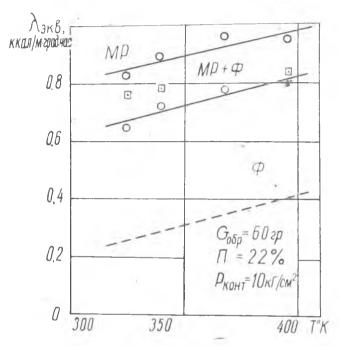
Образцы для испытаний изготавливались в виде прямоугольных пластин размером $100\! imes\!40\! imes\!2,5$ из проволоки марки



Фиг. 2. Зависимость $\lambda_{\text{экв}}$ от величины пористости П образца из МР.

Результаты испытаний представлены в виде графиков на фиг. 2, 3, 4. Величина $\lambda_{9кв}$ для образцов из МР в зависимости от режима испытаний колебалась от 0,6 до 1,1 $\frac{\kappa \kappa a \Lambda}{M \cdot 4a G \cdot 2pa G}$. Зависимость λ_{9kB} от пористости приведена на фиг. 2. С увеличением пористости λ_{9kB} падает. Это происходит за счет увеличения промежуточной среды (воздуха) в образце и уменьшения числа и величины те-

БрКМи-3-1 (Гост 493-51).


пловых контактов. Последнее определяет и снижение $\lambda_{_{9KB}}$ при уменьшении контактного давления на образец (фиг. 3). Выпадение точек при малых контактных давлениях ($P_{_{KOHT}}=0.5~\kappa z/c$ м²) объясняется ухудшением контакта образца с поверхностями нагревателя и холодильника.

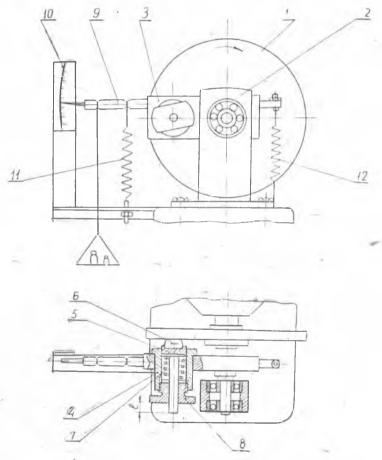
 $\Phi_{\rm HF}.$ 3. Зависимость коэффициента теплопроводности $\lambda_{\rm 9KB}$ материала MP от величины контактного давления $P_{\rm KOHT}.$

Рост $\lambda_{3 \text{кв}}$ с повышением средней температуры образца (фиг. 4) происходит за счет увеличения λ воздуха, заполняющего пространство между проволочками и возрастания лучистого теплообмена внутри материала, который в пористых телах играет значительную роль [6].

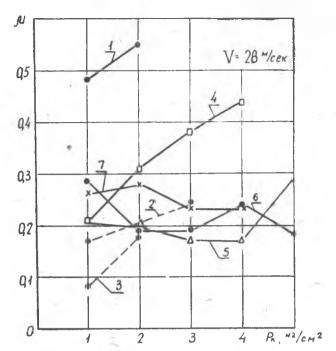
На фиг. 4 нанесена также зависимость $\lambda_{\text{экв}}$ образца с напрессованным фторопластом (MP + Φ -4) и условная кривая для чи-

 Φ иг. 4. Зависимость $\lambda_{9 \, \mathrm{KB}}$ материала MP от средней температуры образца $T_{\mathrm{CP+06P}}.$

стого фторопласта (Ф). Напрессовка фторопластовой ленты толщиной 0,6 мм при толщине образца из MP 2,5 мм снижает $\lambda_{\text{экв}}$ композиции на $20\div25\%$. В этом случае вводится дополнительное тепловое сопротивление, так как фторопласт неполностью внедряется в MP. С другой стороны, образцы, пропитанные фторопластом (квадратные точки на фиг. 4) имеют примерно такую же $\lambda_{\text{экв}}$ как и MP, так как здесь фторопласт является параллельным проводником тепла и компенсирует ухудшение тепловых контактов в основном материале. Таким образом, композитный материал из фторопласта, армированного MP, имеет коэффициент теплопроводности в 3—4 раза больший, чем чистый фторопласт. Это позволяет применить его в более теплонапряженных узлах трения. Однако окончательное суждение о работоспособности этого материала


можно сделать только на основе испытаний образцов на машине трения.

Определение коэффициентов трения и интенсивности износа фторопласта, армированного МР


Испытание образцов проводилось в наиболее тяжелых условиях работы материала контактирующих пар трения— в режиме

сухого трения.

Установка (фиг. 5) смонтирована на машине для испытания на усталость УКИ-10М. На шпинделе вала машины установлен стальной каленый диск I с чистотой рабочей поверхности $\nabla 9 - \nabla 10$. На столе машины закреплена стойка 2, в которой на двух шарикоподшипниках подвижно закреплен рычаг 3. В запрессованном на

Фиг. 5. Схема установки для определения коэффициентов трения и износа образцов материала для подвижного уплотнения.

Фиг. 6. Зависимости коэффициента трения от удельного давления для различных материалов на основе MP:

I—чистый МР БрОФ 6,5; 2—МР—нихром + Ф-4 — напрессовка; 3—МР—БрКМц-3-1 + Ф-4 — напрессовка; 4—МР—метом + Ф-4 — пропитка; 5—МР—БрКМц—3-1 + Ф-4—пропитка; 6—МР—БрОФ 6,5 + Ф-4—пропитка (образец № 1Б); 7—МР—БрОФ 6,5 + Ф-4—пропитка (образец № 1Б); 7—МР—БрОФ 6,5 + Ф-4—пропитка (образец № 2Б):

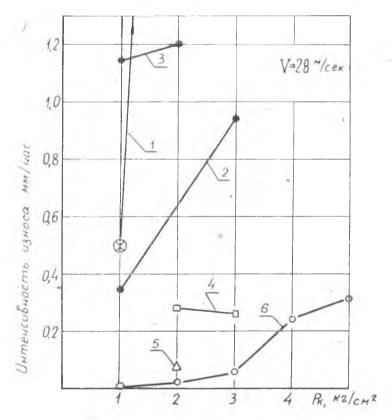
конце рычага стакане 4 находится патрон 5 для установки образца 6, пружина 7 и гайка 8 для регулировки усилия прижатия образца. На конце рычага имеется палец 9 со стрелкой. Рычаг уравновешен в горизонтальном положении при помощи пружины 12. Пружина 11 воспринимает усилие трения. Установка заданного усилия прижатия образца P производится по длине выступающей части хвостовика патрона 5, изменение которой равно изменению длины пружины 7. Грубое определение величины силы трения F производится по отклонению стрелки на конце пальца 9 и отсчитывается по шкале 10. Коэффициент трения рассчитывался по формуле $\mu = \frac{F}{P}$. Износ определялся взвешиванием образцов, а также замером их средней толщины микрометром.

Температура образцов замерялась при помощи термопары и

потенциометра ПП-1.

Образцы цилиндрической формы изготавливались из различной проволоки (нихром, БрКМц-3-1, БрОФ6,5), а затем пропи-

тывались суспензией фторопласта-4 и спекались или ленточный

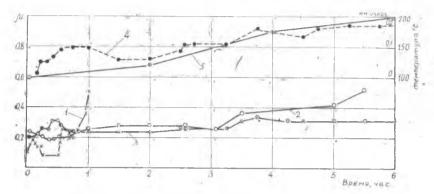

фторопласт напрессовывался на их поверхность.

Пористость образцов составляла в среднем 40%. Испытания проводились при постоянной линейной скорости (v=28 м/сек) и при переменном контактном давлении. Время испытания образца—30 мин. Результаты испытаний приведены на фиг. 6, 7, 8.

Образцы с напрессовкой имеют на поверхности пленку чистого фторопласта. Известно, что при сухом трении фторопласт обладает низким коэффициентом трения (0,02) при весьма малых скоро-

стях скольжения — ниже 1 см/сек [7].

При повышении скорости коэффициент трения сильно возрастает. По некоторым данным применение фторопласта при сухом трении ограничивается величиной pv=22 [8]. Повышение этого предела ведет к катастрофическому износу. Однако значительное повышение теплопроводности композитного материала по сравнению с чистым фторопластом позволяло надеяться, что температу-



 Φ иг. 7. Сравнение интенсивностей износа различных материалов на основе MP (обозначения см. на фиг. 6)

ра в местах контакта трущихся пар будет значительно пиже и это

приведет к уменьшению износа.

Для исследования влияния теплопроводности материала МР на работоспособность композиции при изготовлении основы образцов была применена проволока с низкой (нихром) и более высокой теплопроводностью (бронза). Более низкая теплопроводность нихрома приводила к сильному разогреву диска. Поэтому при

Фиг. 8. Зависимость коэффициента трения износа и температуры от времени работы при сухом трении для композитного материала $MP+\phi$ торопласт-4 (пропитка).

I — Материал проволоки MP — нихром \emptyset 0,09; 2 — Материал проволоки MP — БрКМ — 3—1 \emptyset 0,15; 3 — Материал проволоки MP — БрФ6,5 \emptyset 0,2; 4 — Изменение температуры для образца из проволоки БрФ 6,5; 5 — Изменение износа для образца из проволоки БрФ 6,5.

испытании образцов из нихрома диск обдувался вентилятором. Снижение температуры диска и привело, по-видимому, к уменьшению величины износа образцов с основой из нихрома по сравнению с образцами с основой из бронзы, несмотря на то, что коэффи-

личент трения в первом случае был выше (фиг. 6, 7).

Коэффициент трения µ для образцов с напрессованным фторопластом колеблется в пределах 0,1—0,24 и растет с увеличением давления, что можно объяснить ростом температуры с увеличением рконт при больших скоростях. При испытании напрессованных образцов происходит быстрый износ слоя фторопласта. Увеличение времени работы на 5 ₹-10 минут сверх указанного приводило к обнажению основы. Несмотря на то, что коэффициент трения образцов с пропиткой имеет ту же величину, что и для образцов с напрессовкой (для бронзовой основы), износ здесь значительно ниже. Следовательно, в этом случае основную нагрузку воспринимает проволочная основа, а пропитка играет роль смазки.

На величину коэффициента трения композиции значительное влияние оказывают антифрикционные свойства основы. Несмотря

на обдув диска вентилятором, коэффициент трения у образцов

с основой из более твердого нихрома выше, чем у бронзы.

Для сравнения на фиг. 6 и 7 приведены результаты испытания образца из бронзы БрОФ6,5 без пропитки. Образец показал высокий коэффициент трения и катастрофический износ при давлении всего в 2 кг/см². На трение и износ пропитанных образцов оказывает влияние и структура МР. Во всех случаях, когда на поверхности трения наблюдалось неравномерное распределение проволочек, износ и коэффициент трения возрастали.

На фиг. 8 показано изменение коэффициента трения, износа и температуры в контактирующей паре по времени для образцов с

пропиткой.

Несмотря на отдельные отклонения, заметна общая тенденция к возрастанию износа и коэффициента трения с повышением температуры. При этом образец с МР из БрОФ6,5 показал более устойчивый коэффициент трения, чем образец с МР из БрКМц-3-1. Это объясняется лучшими антифрикционными свойствами БрОФ6,5.

выводы

1. На основе MP могут быть созданы новые композитные антифрикционные материалы, которые по ряду свойств превосходят как известные полимерные материалы (по теплопроводности, термостойкости, износостойкости, прочности и меньшей ползучести), так и известные углеграфитовые и керамические материалы (по упругости и способности демпфировать колебания).

2. Армирование фторопласта МР ведет к увеличению тепло-

проводности композиции в 3—4 раза.

3. В условиях сухого трения при скоростях скольжения $v = 28 \ \text{м/сек}$ и давлениях до 5 кe/cm^2 лучшими по износостойкости являются композиции из MP, пропитанной фторопластом-4, которые значительно превосходят чистый фторопласт.

4. Указанные композиции после соответствующей обработки могут быть рекомендованы в качестве материала для уплотнительных колец в уплотнениях, работающих в условиях сухого трения:

5. Имеется возможность дальнейшего повышения износостойкости и снижения коэффициентов трения указанных композиций за счет подбора лучших антифрикционных свойств материала проволоки MP, оптимальной структуры и пористости, а также за счет применения для пропитки MP фторопласта с антифрикционными наполнителями (углеграфит, двухсернистый молибден и т. д.).

ЛИТЕРАТУРА

1. В. К. Харитонов. Торцовые уплотнения вращающихся валов в химическом машиностроении. ЦНИИТМАШ, 1961.
2. Д. Д. Чегодаев и др. Фторопласты, Госхимиздат, Ленинград, 1960.
3. А. И. Голубев. Современные уплотнения вращающихся валов, Маш-

гнз, 1960.

4. А. Ф. Чудновский. Теплообмен в дисперсных средах. ГИТЛ, Москва, 1954.

5. М. А. Михеев. Основы теплопередачи. М.-Л., 1956.

6. С. А. Дружинин. О расчете внутреннего теплообмена при охлаждении. «Теплоэнергетика», № 9, 1961. 7. D. E. Flom, N. T, Porile, J, Aqql Phys. № 28, р 1361, 1957.

8. Ш. М. Билик, Методы испытания пластмасс на истирание, Сборник «Методы испытания на изнашивание». Изд. АН СССР, М. 1962.