ностей изготовления и монтажа трусопроводов, 0-50% — на долю температурных перемещений, 3-25% — на долю перемещений от упругих деформаций.

Предлагаемая методика может быть использована также для оценки взаимозаменяемости разрабатываемой конструкции трубопровода.

Литература

І. В и г д о р ч и к С.А. Технологические основы проектирования и конструирования самолетов. Вып. І. МАИ, 1974.
2. Б у р ц е в К.Н. Металлические сильфоны. М., "Машгиз", 1963.
3. М я г к о в Н.Д. Допуски и посадки. М., "Машиностроение". 1966.

4. Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся втузов. М., Гос.изд. технико-теоретической литературы, 1953.

JIK 629.7.02: 629.7.07I.00I.4

Б.С.Чубенко

О ПОКАЗАТЕЛЯХ ТЕХНОЛОГИЧНОСТИ КОНСТРУКЦИИ ИЗДЕЛИЙ ПРИ ЗАВОЛСКИХ ИСПЫТАНИЯХ

В данной статье рассматриваются вопросы, связанные с оценкой технологичности изделий при заводских контрольных испытаниях (ЭКИ) с учетом специфических факторов.

В настоящее время трудоемкость ЗКИ достигает 15-20% от общей грудоемкости изготовления изделий. Стоимость испытательного парка приборов и оборудования, необходимых для проведения ЗКИ, доходит до 30-40% от затрат в целом на производство изделий определенного типа.

Однако уровень проработки технологии ЗКИ отстает от современного технического уровня самих изделий. Объясняется это рядом обстоятельств. Во-первых, алгориты ЗКИ и обеспечение испытетельным парком приборов и оборудования полностью закладывается в конструкторской документации. При этом подробный технологический анализ самого алгоритма, как правило, отсутствует, что обусловлено слож-

ностью алгоритма и его большой зависимостью от конструкции изделия. Во-вторых, в методиках отработки конструкций изделий на технологичность и при оценке уровня технологичности изделий, определяемых государственными стандартами 18.831-73, 14.2014204-73, не учитываются специфические особенности ЗКИ как вида производства. В-третьих, отсутствуют как отраслевые РТМ, так и необходимые статистические данные для оценки технического уровня ЗКИ многих изделий.

Как следствие этого, в технической документации ОКБ и предприятий отрасли нечетко сформулированы требования к технологичнос ти изделий с точки эрения ЗКИ.

Поэтому для сравнения конструктивных решений и обоснования выбора оптимального варианта конструкции изделия с точки зрения ЗКИ широко применяется качественная оценка по параметру "контроле-пригодность конструкции" [1]. Примеры качественной оценки даны в таблице.

Таблица

гаолица		
Объект	Гехнологическое решение	нетехнологическое решение
Способ запитки систем при ЗКИ	Испытания систем изделия производятся от сетевых стабилизированных источ-ников питания	мспытания выполняются от технологических ба- тарейных источников, установленных по штат- ной схеме
Метод выбора маршрута прибора при ЗКИ	Приборы после проверок в лабораториях входного кон- троля (ЛВК) поступают на испытательный стенд изделия, устанавливаются вне изделия и после ЗКИ окончательно монтируются на изделие	Приборы из ЛВК поступа- ют на сборку, затем снимаются для целей ЗКИ и повторно после ЗКИ устанавливаются штатно
Метод выбора маршрута изделия при ЗКИ	Изделие подается на ЗКИ со всеми необходимыми заправ- ками систем рабочим телом	Заправки систем изделия рабочим телом осущест- вляются при ЗКИ после- довательно
Конструкция изделия	Все контрольные ШР БКС и НКС собраны на одной пла- те в одной зоне изделия	Контрольные ШР БКС и НКС расположены по всей поверхности изделия
Конструкция приборных отсеков	Этажерочный тип с обеспечением доступа снаружи к ирбому боз его монтажного затенения другим блоком или узлом	Рамная схема с большим - монтажным затенением блоков друг другом

I	2	3
Конструкция БКС	Плоский тип кабелей, совме- щенных со скелетной схемой конструкции изделия	Жгутовой набор по типу "паук"
Конструк- тивная схе- ма изделия	Отсеки изделия не расстыко- вываются для целей ЗКИ	Отсеки изделия рассты- ковываются при ЗКИ
Принципиаль- ная схема контроля систем	Контрольные гнезда приборов систем собраны в единый блок	Контрольные гнезда при боров систем распреде- лены по зонам изделия

Очевидно, что такая оценка обобщает лишь опыт разработчика и не позволяет определить степень различия технологичности сравниваемых вариантов.

Однако внедрение ЕСТПП обусловливает необходимость дополнить государственные стандарты [2], [3] такими количественными показателями, которые учитывали бы специфику изделий и производство отрасли.

При ЭКИ основные виды технологичности — производственная и эксплуатационная — обладают общими признаками. Это определяет и общую область проявления технологичности конструкции изделия, а именно: проверку функционирования изделия, а также поиск и устранение обнаруженных неисправностей в системах.

Главными специфическими факторами, определяющими требования к технологичности конструкции изделия на стадии ЗКИ, являются: компоновочная схема систем изделия, подготовительные работы для ЗКИ, алгоритм ЗКИ, его обеспечение испытательным парком приборов и оборудования. Поэтому количественные показатели технологичности изделия зависят от указанных факторов. Эта зависимость харантеризуется следующими признаками:

трудоемкостью сборочно-монтажных работ, которые необходимо выполнить до ЗКИ, во время их проведения и после окончания;

трудоемностью повторных демонтажных работ во время проведения ЗКИ:

распределением времени ручной и автоматизированной проверов;

кубатурой испытательного парка присоров и оборудования; кубатурой подготовленного для ЭКИ изделия.

В рассмотренных признаках можно выделить ссответственно слежующие слагаемые:

$$T_{\text{TR.CO}} = T_{\text{I}} + T_{3\text{RM}} + T_{3}$$
; (I)
 $T_{3\text{RM}} = T_{4} + T_{5}$,

где Трикоб - трудоемкость главной сборки изделия;

Т₁ - трудоемкость сборочно-монтажных работ, которые необходимо выполнить по главной сборке до ЗКИ;

Т_{ЗКИ} - трудоемкость сборочно-монтажных работ, которые выполняются во время проведения ЭКА;

Т₃ - трудоемкость сборочно-монтажных расот, выполненных после окончания ЗКИ;

 T_{4} — трудоемкость повторных демонтажных работ, выполняемых исключительно для целей $3 \mathrm{Kh}$;

Трудоемкость последовательных сборочно-монтажных работ при ЗКИ.

Время проведения ЗКИ

$$t_{Mu} = t_p + t_{u\delta m} , \qquad (2)$$

где tp - время, необходимое оператору для выполнения ручной проверки и обработки информации;

 $\mathcal{E}_{\mathcal{Q}\mathcal{B}\mathcal{M}}$ — время автоматизированной проверки систем управления. Время автоматизированной проверки систем управления

$$t_{akm} = t_{au} + t_{np} + t_{\kappa u} + t_{uc} , \qquad (3)$$

где $t_{\mu\mu}$ - время I-го этапа испытаний;

tan - время 2-го этапа испытаний;

t и - время 3-го этапа испытаний;

tue - время проверки исходного состояния после ЭКИ.

Кубатура, необходимая для ЗКИ,

$$V_{IAII} = V_{U3\partial} + V_{UII} , \qquad (4)$$

 $V_{\mathcal{U}\mathcal{S}\hat{\mathcal{O}}}$ - кубатура, занимаемая изделием, подготовленным для вки:

 $V_{
u\eta}$ — кубатура испытательного парка приборов и оборудования. Кубатура изделия

$$V_{u3d} = V_{ry} + \Delta V_{II} , \qquad (5)$$

(изделие собрано по главной сборке с габаритами, согласно теоретическому чертежу изделия),

где ΔV_{n} - приращение кубатуры изделия, вызванное подготовной к ЗКИ.

Учитывая соотношения (I) - (4), можно составить систему следующих количественных показателей:

1. Коэффициент съемного оборудования при ЭКИ

$$H_{C} = \frac{T_{4}}{T_{3HM}}$$

 $K_{\rm C}$ учитывает долю повторных демонтажных работ, выполненных после главной сборки для целей ${\rm SKM}$, ${\rm O} \ll {\rm K_{\rm C}} \ll {\rm I}$ — направление улучшения показателя.

2. Коэффициент сборочно-монтажной готовности изделия к ЗКИ

$$K_{\mathbf{r}} = \mathbf{I} - \frac{T_{\mathbf{3}KM}}{T_{\mathbf{I}}} ,$$

 ${\tt K}_{{\tt \Gamma}}$ учитывает распределение сборочно-монтажных работ между главной сборкой и ${\tt 3KN}$, ${\tt O}$ < ${\tt K}_{{\tt \Gamma}}$ < ${\tt 7}$ — направление улучшения показателя.

3. Коэффициент прямоточности сборки и испытаний

$$K_{\rm np} = I - \frac{T_3}{T_{\rm rn.co}} ,$$

 $\kappa_{
m пp}$ учитывает долю сборочно-монтажных работ по главной сборке после окончания ЗКИ, $\varrho < \kappa_{
m np} < 1$ — направление улучшения показателя.

4. Коэффициент степени автоматизации испытаний

$$K_{aB} = \frac{ta8m}{t_p + ta8m} ,$$

 K_{ab} рассчитывается по видам испытаний: 1,2,3-этапы и проверка исходного состояния, K_{ab} учитывает степень автоматизации ЗКИ, $O < K_{ab} < 1$ направление улучшения показателя.

5. Коэффициент рациональности испытаний

$$I_p = \frac{t_{KU}}{t_{AU} + t_{AP} + t_{KU} + t_{UC}},$$

К_р характеризует степень преобладания 3- го этапа испытаний как основного вида проверок, $\mathcal{O} \ll \mathcal{K}_{\rho} \ll 1$ — направление улучшения показателя.

6. Кубатурный коэффициент испытаний

$$\lambda_{p} = \frac{V_{p,q}}{V_{p,q} + \Delta V_{p} + V_{up}} ,$$

К, учитывает долю кубатуры собранного по главной сборке изделия по отношению к общей кубатуре, необходимой для проведения ЗКИ, - направление улучшения показателя. 0 < K < 1

Предлагаемая система показателей позволяет:

получить развернутую количественную оценку технологичности изделия с точки эрения ЗКИ на этапе эскизного проекта изделия:

создать предпосылки для более эффективной отработки осваиваемых изделий на технологичность при ЗКИ:

разработать по результатам практических оценок типовые требования технологичности изделия, его элементов и комплектующей аппаратуры с точки зрения испытаний.

Экономическая эффективность от использования системы показателей может быть достигнута по следующим направлениям:

сокращение сроков подготовки ЗКИ как вида прсизводства за счет запуска конструкторской документации, отвечающей единым технологическим требованиям по испытаниям:

снижение затрат на проведение ЗКИ за счет сокращения трудоемкости подготовительных работ и парка испытательного оборудова-RNH

повышение качества ЗКИ за счет отработки более технологичной конструкции изделия.

Литература

1. Технологичность конструкции. ГОСТ I8 83I - 73. 2. Правила обеспечения технологичности конструкции изделий. ГОСТ I4 202 - 73, ГОСТ I4 204 - 73.

3. Методика отработки конструкций на технологичность и оценки уровня технологичности изделий машиностроения и приборостроения. М., Издательство стандертов, 1973.