ВЛИЯНИЕ РЕЛАКСАЦИОННОГО МЕХАНИЗМА ГИСТЕРЕЗИСНОГО ДЕМПФИРОВАНИЯ НА ДИНАМИКУ КОЛЕБАТЕЛЬНЫХ СИСТЕМ Шакиров Ф.М.

Самарский государственный аэрокосмический университет, г. Самара

Исследования энергодиссипационных характеристик конструкшионных и эластомерных материалов [1...3] показывают, что свойство внутреннего трения многих из них, а в некоторых случаях и внешнего сухого трения может быть описано вязким демпфером, у которого коэффициент вязкого демпфирования d изменяется обратно пропорционально частоте возмущающего сигнала α : $d = k/\omega$, где k – коэффициент гистерезисного демпфирования [1]. Демпферная сила в этом случае пропорциональна относительному перемещению, но находится в фазе с относительной скоростью через демпфирующий элемент. А рассеянная за цикл колебаний энергия независима от частоты колебаний, в отличие от вязкого демпфирования, диссипированная энергия при котором линейно зависит от ω

Виброзащитное устройство (ВЗУ) в форме модели Пойнтинга-Томпсона (иначе - Зенера) с гистерезисным типом демпфирования может служить для описания свойств находящихся в условиях гармонического вибровозмущения составных подвесок в форме комбинации элемента из сплошного материала (эластомерного или конструкционного) и расположенного последовательно ему упругого элемента.

Схема колебательной системы (КС) с гистерезисным демпфированием и ВЗУ в форме модели Пойнтинга—Томпсона дана на рис.1. Математическая модель предполагает допущения: масса основания значительно превосходит массу объекта и обе недеформируемые; объект является точечной массой, а КС имеет сосредоточенные параметры; элементы связи объекта с основанием обладают пренебрежимо малой массой; упругий и диссипативный элементы имеют линейные характеристики; колебания являются установившимися однонаправленными.

Движение КС описывается системами уравнений:

для кинематического возмущения -

$$\begin{split} m\ddot{x}_{2}(t) + c_{1}[x_{2}(t) - x_{1}(t)] + c[x_{2}(t) - x_{3}(t)] = 0 \\ \omega \ c[x_{2}(t) - x_{3}(t)] = k[\dot{x}_{3}(t) - \dot{x}_{1}(t)] \end{split} ,$$
 (1)

для силового -

$$m\ddot{x}_{2}(t) + c_{1}x_{2}(t) + c[x_{2}(t) - x_{3}(t)] = F(t) \omega c[x_{2}(t) - x_{3}(t)] = k\dot{x}_{3}(t)$$
(2)

где *т*- масса защищаемого объекта; *с*, *с*₁ - соответственно, релаксаци-

Рисунок 1 - Схема КС с гистерезисным демпфированием и ВЗУ в форме модели Пойнтинга-Томсона (Зенера) при различной осииллящии

онная и статическая жесткости; $x_1(t)$, $\dot{x}_1(t)$ – перемещение основания и его скорость; $x_2(t)$, $\ddot{x}_2(t)$ – перемещение и ускорение объекта; $x_3(t)$, $\dot{x}_1(t)$ – перемещение связи между упругим и диссипативным элементами и ее скорость, F(t) – внешняя сила, t – время.

Из множества передаточных функций (ПФ) и связанных с ними частотных характеристик [4], которые можно получить на основании систем уравнений (1) и (2), рассмотрим наиболее часто используемые для оценки прочности и структурной целостности объекта, основания и их связей. При кинематическом возмушении это ПФ: W_A (s)- по абсолютному и $W_R(s)$ - по относительному параметру (перемещение, скорость, ускорение); здесь s - комплексная величина, отражающая применение процедуры преобразования Лапласа. В случае силового возмущения: Wn (s) - по перемещению; W_{CK} (s) - по скорости; W_{YC} (s) - по ускорению. Указанные ПФ, модули и аргументы частотных ПФ приведены в табл.1. Здесь µкоэффициент передачи, и - коэффициент динамического усиления. безразмерная частота $\eta = \omega/\omega_{\rm h}$ возмущения, $A = \frac{2\overline{\xi}}{N\omega_0^3}s^3 + \frac{1}{\omega_0^2}s^2 + \frac{N+1}{N}\cdot\frac{2\overline{\xi}}{\omega_0}s + 1; \quad B = (1-\eta^2)^2 + \left[\zeta(N+1-\eta^2)/N\right]^2; \varphi$ угол сдвига фаз; $\omega_0 = (c_1/m)^{0.5}$ - собственная частота недемпфированной КС; $N = c/c_1$ – безразмерная жесткость; $\overline{\xi} = \zeta / 2\eta$ - частотно-зависимый безразмерный коэффициент демпфирования: $\zeta = k / c_1 - коэффициент$ потерь; индексы частотных функций соответствуют индексам ПФ. Графики АЧХ по табл.1 представлены на рис.2.

Выражения резонансных значений модулей частотных ПФ и соответствующих им безразмерных резонансных частот в функции коэффициента потерь ζ и безразмерной жесткости *N* представлены в табл.2. Графики указанных функций приведены на рис. 3...6.

Аналитические выражения оптимальных величин коэффициента

потерь ζ_{ORT} , которые обеспечивают соблюдение условий минимаксов АЧХ, получаются подстановкой в выражение резонансной частоты $\eta_p \equiv 10$ табл.2 частотной координаты инвариантной точки. Последняя определяется из условия равенства ординат предельных резонансов АЧХ.

Выражения координат инвариантных точек и оптимальных значений коэффициента потерь как функций безразмерной жесткости представлены в табл.3 для рассмотренных выше модулей частотных ПФ. Графическая иллюстрация указанных функций приведена на рис.7.

Ограниченный объем публикации не позволяет привести здесь анализ представленного аналитического и графического материала. Поэтому ограничимся лишь формулировкой выводов.

Поведение КС с гистерезисным демпфированием и ВЗУ в форме модели Пойнтинга-Томпсона (Зенера) во многом похоже на поведение КС с вязким демпфированием и тем же видом ВЗУ, но имеет и явные отличия. Так, для рассмотренных АЧХ характерно:

1) при нулевом ($\zeta = 0$) и бесконечном ($\zeta = \infty$) гистерезисном демпфировании АЧХ имеют предельные положения, через точку пересечения которых – инвариантную точку – проходят линии АЧХ при конечных уровнях демпфирования ($0 < \zeta < \infty$) – рис.2. Предельный резонанс при $\zeta = 0$ локализован на недемпфированной собственной частоте ω_0 , второй (при $\zeta = \infty$) – на частоте $\omega_{\infty} = \omega_0 (1+N)^{0.5}$. Обе резонансные кривые по виду идентичны резонансной кривой консервативной КС;

2) с ростом уровня гистерезисного демпфирования в системе максимумы АЧХ вначале снижаются, проходят через минимум, совпадающий с инвариантной точкой и зависящий только от величины безразмерной жесткости N, а затем возрастают (рис.2...7). Безразмерные резонансные частоты при этом только возрастают (в отличие от случая вязкого демпфирования) от $\eta_p = 1$ при $\zeta = 0$ до $\eta_p = (1+N)^{0.5}$ при $\zeta = \infty$;

 инвариантные точки АЧХ при гистерезисном демпфировании совпадают с инвариантными точками аналогичных АЧХ при вязком демпфировании в пределах одной и той же по структуре КС (рис.7.а);

4) один из пары низко- и высокочастотных модулей всех рассмотренных частотных ПФ зависит от гистерезисного демпфирования, второй – нет (в отличие от случая вязкого демпфирования), а темпы затухания низко и высокочастотных колебаний равны соответствующим показателям консервативной КС (рис.2);

5) как и при вязком демпфировании диапазоны низко- и высокочастотной виброизоляции являются функциями уровня демпфирования (параметра ζ) и безразмерной жесткости N (рис.2). Диапазоны виброизоляции в низкочастотной области не меньше, а в высокочастотной – не больще аналогичных диапазонов консервативной КС; Таблица 1

Аргумент частотной ПФ (ФЧХ): ø(η)	$\varphi_{A}(\eta) = \begin{cases} -\alpha r crg(\zeta \eta^{2} / Q), & \text{при } Q \ge 0 \\ -\pi - \alpha r crg(\zeta \eta^{2} / Q), & \text{при } Q < 0 \end{cases}$ $\text{где } Q = 1 - \eta_{1}^{2} + \zeta^{2} (N + 1) (N + 1 - \eta^{2}) / N^{2}$	$\varphi_{R}(\eta) = \begin{cases} -\arg(\zeta / Q), & \operatorname{uph} Q \ge 0\\ -\pi - \arg(\zeta / Q), & \operatorname{uph} Q \ge 0, \end{cases}$ refer $Q = 1 - \eta^{2} + \zeta^{2} (N + 1 - \eta^{2}) / N^{2}$	$\varphi_{\Pi}(\eta) = \begin{cases} -\alpha rcig(\zeta \mid Q), & \text{ipn } Q \ge 0\\ -\pi - \alpha rcig(\zeta \mid Q), & \text{ipn } Q < 0, \end{cases}$ $\text{fige } Q = 1 - \eta^{2} + \zeta^{2} (N + 1 - \eta^{2}) / N^{2}$	$\varphi_{c\kappa}(\eta) = -2\pi + arctg \frac{1 - \eta^2 + \zeta'(N + 1 - \eta^2)/N^2}{\zeta}$	$\varphi_{\rm sc}(\eta) = \begin{cases} -\pi - \operatorname{arctg}(\zeta \mid Q), & \operatorname{irph} Q \ge 0 \\ -2\pi - \operatorname{arctg}(\zeta \mid Q), & \operatorname{irph} Q < 0, \end{cases}$ $\operatorname{rle} Q = 1 - \eta^2 + \zeta^2 (N + 1 - \eta^2) / N^2$
Модуль частотной $\Pi \Phi$ (AЧX): $\mu(\eta), \nu(\eta)$	$\mu_{A}(\eta) = \sqrt{\frac{1 + \left[\frac{\zeta(N+1)}{N}\right]^{2}}{B}}$	$\mu_{R}(\eta) = \sqrt{\frac{\eta^{4} + \left(\frac{\zeta \eta^{2}}{N}\right)^{2}}{B}}$	$V_{II}(\eta) = \sqrt{\frac{1 + \left(\frac{\zeta}{N}\right)^2}{B}}$	$V_{\rm CK}(\eta) = \sqrt{\frac{\eta^2 + \left(\frac{\zeta \eta}{N}\right)^2}{B}}$	$\nu_{\rm yc}(\eta) = \sqrt{\frac{\eta^4 + \left(\frac{\zeta \eta^2}{N}\right)^2}{B}}$
Передаточная функция <i>W(s)</i>	$W_A(s) = rac{N+1}{N} \cdot rac{2\xi}{\omega_0} rac{s+1}{4}$	$W_{\rm R}(s) = \frac{-2\xi_{\rm s}}{-N\omega_{\rm o}^{3}}s^{3} - \frac{1}{\omega_{\rm o}^{2}}s^{2}}{A}$	$W_{n}(s) = \frac{2\xi}{N\omega_{0}} s + 1$	$W_{\rm CK}(s) = rac{2 \overline{\xi}}{N \omega_0^3} s^2 + rac{1}{A} s$	$W_{yC}(s) = \frac{2\xi_{s}^{2}}{N\omega_{0}^{3}} \frac{s^{3} + \frac{1}{\omega_{0}^{2}}s^{i}}{A}$
Нагру- жение	Кинематическос		Силовое		

Таблица 2

Резонансное значение	Безразмерная резо-
$\mu_{Ap} = \sqrt{[N^2 + (N+1)^2 \zeta^2](N^2 + \zeta^2)/N^4 \zeta^2}$	$\frac{N^2 + (N+1)\zeta^2}{N^2 + \zeta^2}$
$\mu_{Rp} = \sqrt{[N^2 + (N+1)^2 \zeta^2](N^2 + \zeta^2) / N^4 \zeta^2}$	$\sqrt{\frac{N^2 + (N+1)^2 \zeta^2}{N^2 + (N+1)\zeta^2}}$
$v_{ll_p} = (N^2 + \zeta^2) / N^2 \zeta$	$\sqrt{\frac{N^2 + (N+1)\zeta^2}{N^2 + \zeta^2}}$
$\nu_{CK_{p}} = \sqrt{\frac{0,5(N^{2} + \zeta^{2})}{\sqrt{[N^{2} + (N+1)^{2}\zeta^{2}](N^{2} + \zeta^{2}) - N^{2} - (N+1)\zeta^{2}}}$	$\sqrt[4]{\frac{N^2 + (N+1)^2 \zeta^2}{N^2 + \zeta^2}}$
$\nu_{yC_{p}} = \sqrt{[N^{2} + (N+1)^{2}\zeta^{2}](N^{2} + \zeta^{2})/N^{4}\zeta^{2}}$	$\sqrt{\frac{N^2 + (N+1)^2 \zeta^2}{N^2 + (N+1)\zeta^2}}$

Таблица 3

АЧХ	Координаты инва	риантных точек	Оптимальный коэффи-
	$\eta_{\scriptscriptstyle HH}(N)$	$W_{HH}(N)$	циент потерь $\zeta_{O\Pi T}$
μ_{h} , V_{c}	$\sqrt{2(N+1)/(N+2)}$	(N+2)/N	$N/\sqrt{N+1}$
fles Vyc	$\sqrt{(N+2)/2}$	(N+2)/N	$N/\sqrt{N+1}$
V_{II}	$\sqrt{(N+2)/2}$	2/N	N
V _{CK}	$\sqrt{(N+2)/2}$	$\sqrt{2(N+2)}/N$	$N\sqrt{(N+4)/(3N+4)}$

6) уровень гистерезисного демпфирования в КС можно оптимизировать при данном значении параметра N с целью достижения минимальной величины резонансного пика АЧХ – рис.3...7;

7) резонансные значения всех АЧХ мало чувствительны к изменению уровня демпфирования в окрестности оптимума (*ζопт*) – рис.3...6;

8) при малых уровнях гистерезисного демпфирования ($\zeta < 0,2$) и величинах безразмерной жесткости N > 1,0 резонансные значения всех рассмотренных АЧХ очень близки (рис.3...6) и в пределах 10%-ой ошибки могут быть определены из выражения: $W_p(\zeta) \approx 1/\zeta$;

9) резонансные частоты функций $\mu_R(\eta)$, $v_{\Pi}(\eta)$, $v_{CK}(\eta)$, $v_{yC}(\eta)$ очень чувствительны к малым отклонениям гистерезисного демпфирования от оптимального значения ($\zeta_{O\Pi T}$), а резонансные частоты функций $\mu_A(\eta)$ и $v_C(\eta)$ - мало чувствительны (рис.3...6);

Рисунок 2- АЧХ по абсолютному (а) и относительному (б) параметрам (кинематическое возмущение), по перемещению (в), скорости (г) и ускорению (б) при силовом возмущении

Рис. 3. Резонансные характеристики по абсолютному параметру при кинематическом возмущении

Рис. 4. Резонансные характеристики по относительному параметру (кинематическое возмущение) и ускорению (силовое возмущение)

Рис. 5. Резонансные характеристики по перемещению при силовом возмущении

Рис.7. Координаты инвариантных точек (а) и оптимальные величины коэффициента потерь (б) в функции параметра N

10) при малых величинах гистерезисного демпфирования ($\zeta < 0,1$) резонансные частоты всех АЧХ приблизительно равны недемпфированной собственной частоте ω_0 для всех значений параметра N;

11) одновременное обеспечение относительной устойчивости резонансных значений АЧХ и их резонансных частот к флуктуациям гистерезисного демпфирования в окрестности оптимальной величины (ζ_{OIIT}) возможно для функций $\mu_A(\eta)$ и $\nu_C(\eta)$, тогда как для функций $\mu_R(\eta)$, $\nu_{II}(\eta)$, $\nu_{CK}(\eta)$, $\nu_{VC}(\eta)$ – нет (рис.3...6).

При заданной недемпфированной собственной частоте ω_b , величина которой обычно зависит от статической осадки КС, выбор значений параметров ζ и N для рассматриваемой модели может иметь или не иметь компромиссного характера в зависимости от того, модуль какой частотной передаточной функции является при этом приоритетным.

Список литературы

- 1. Нашиф А., Джоунс Д., Хендерсон Д. Демпфирование колебаний. М.: Мир, 1988. 448 с.
- Писаренко Г.С., Яковлев А.П., Матвеев В.В. Вибропоглощающие свойства конструкционных материалов: Справочник. – Киев: Наукова Думка, 1971. – 375 с.
- Чегодаев Д.Е., Пономарев Ю.К. Демпфирование. Самара: Изд-во СГАУ, 1997. – 334 с.
- Динамические свойства линейных виброзащитных систем. М.: Наука, 1982. – 208 с.