ВОПРОСЫ ПРОЧНОСТИ И ДОЛГОВЕЧНОСТИ ЭЛЕМЕНТОВ АВИАЦИОННЫХ КОНСТРУКЦИЙ Межвузовский сборник, вып. 5, 1979

УДК 539.43

А.С.Мостовой, А.Г.Прохоров

ПРОІНОЗИРОВАНИЕ И АНАЛИЗ ПРОЦЕССА РАЗРУШЕНИЯ ОТ УСТАЛОСТИ ОБРАЗЦОВ И ЭЛЕМЕНТОВ КОНСТРУКЦИЙ

Целью настоящей работы является прогнозирование и анализ параметров, характеризующих процесс разрушения от усталости. К числу их отнесем момент появления трещины, напряжение, повреждение (размеры трещины) и интенсивность накопления повреждений (скорость их изменения), релаксацию внешней нагрузки при жестком нагружении и момент разрушения элемента.

Некоторые значения анализируемых параметров получены экспериментально и могут быть сопоставлени с расчетными. Этим достигается дополнительная проверка эффективности методики, примененной для анализа разрушения, и подтверждается возможность иссленованы параметров, не наблюдаемых в процессе эксперимента.

В основу исследования положена линейно-дискретная типотеза накопления повреждений и разработанный на ее основе метод расчета долговечности образцов и элементов конструкций [1].

Сущность упомянутой гипотезы сводится к следующему.

Сечение образца, детали представляется как совокупность дискретных элементов-волокон. Разрушение наиболее напряженного волокна отождествляется с моментом появления трещины и происходит при критическом повреждении волокна, принятом равным единице. Повреждение П волокна определяется по линейной теории $D = \sum_{i=1}^{n} N_i$, где N_i , соответственно пройденное и разрушающее числа циклов при 1 -м уровне напряжений.

Кривая усталости по появлению макротрещини в истинных напряжениях отождествляется с кривой равной вероятности критичес-

пого повреждения волокон. Аналогичные положения высказаны M.Д.Вагаповым [2].

Упомянутая кривая получается экспериментально для образца 🗈 данного материала при данной обработке и пересчитывается для мотали в соответствии с теорией подобия усталостного разрушения [3]. Полученная таким образом кривая< \mathcal{S}_{ucm} (N) для разшых веротностей является исходной для расчета кривой усталости по разрушению.

Не теряя общности рассуждений, рассмотрим далее растянутый плоский образец прямоугольного сечения с концентратором - отвер-

отием. Рассмотрим напряжения и волокнах, расположенных плоль оси Х в разные моменты премени (рис. I). Эпюры на рис. І характеризуют распределение напряжений в моменты премени, соответствующие последовательному разрушению полокон (К - 1) (пунктир) и К (сплошная линия). Штрихпунктиром показана эпюра напряжений до появления трещи-

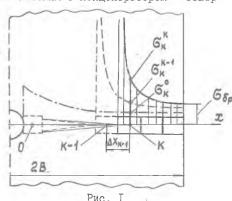


Рис. І

Волокно K в момент разрушения волокна (K-1) при напряжении $\mathfrak{S}_{\kappa}^{\mathsf{K-1}}$ имело повреждение $\mathfrak{D}_{\kappa}^{\mathsf{K-1}}$, накопленное при напряжениях \mathfrak{S}_{κ} , $\mathfrak{S}_{\kappa}^{\mathsf{K-1}}$. Здесь верхний индекс показывает, при разрушении какого волокна рассматривается напряжение в волокне к . Повреждение 🕽 🦰 может быть определено, если известны упомянутые напряжения и скорости продвижения трещины в предыдущие моменты времени.

После разрушения (К - 1)-го волокна накопление повреждения ΔD_{K} в K -м волокне происходит при напряжении \mathcal{G}_{K}^{K} . Волокно Kразрушается при $D_{\kappa} = D_{\kappa}^{\kappa-1} + \Delta D_{\kappa} = 1$, откуда может быть определею ΔD_{κ} . С другой стороны, $\Delta D_{\kappa} = \frac{\Delta D_{\kappa}}{N_{\kappa}}$, что позволяет определить ΔN_{κ} число циклов (время) "жизни" волокна к при напряжении \mathcal{S}_{κ} . Расстояние ΔX_{K} между волокнами K и (K+1), отнесенное ко времени ΔT_{K} , дает среднюю скорость ΔX_{K} распространения трещины на интервале ΔХ.

Математическое описание приведенной модели распространения трещины приводит к интегральному уравнению, выражающему условия разрушения К -го волокна:

 $D_{\kappa} = \frac{\tau_{\circ} \omega}{N_{\kappa}^{\circ}} + \int_{x_{\circ}}^{x_{\kappa}} \frac{\omega}{N_{\kappa}^{n}} \left(\frac{d\tau}{dx}\right) dx = 1.$

Здесь С. - время до разрушения волокна "О" (до появления трещины), ω - частота нагружения, принимаемая постоянной, N_{ν} число циклов до разрушения волокна К при напряжении б величина, обратная скорости распространения трещины,

Решение уравнения (I) в конечных приращениях приводит к следующей рекуррентной зависимости:

$$\left(\frac{d\tau}{dx}\right)_{K} = -\frac{N_{K+1}^{N+1}}{\Delta x_{K}} \left[\tau_{o}\left(\frac{1}{N_{K+1}^{o}} - \frac{1}{N_{K}^{o}}\right) + \sum_{n=1}^{K} \left(\frac{d\tau}{dx}\right)_{n+1} \left(\frac{1}{N_{K+1}^{n}} - \frac{1}{N_{K}^{n}}\right) \Delta x_{n-1}\right]. \tag{2}$$

Аналогичная зависимость определяет скорость очасть переча щения точек линии фронта плоской трещины вдоль оси у

я точек линии фронта плоской трещины вдоль оси
$$y$$
. Из выражения
$$F_n = \int_{x_0}^{x_0} \int_{y_0}^{y_0} \frac{dx}{d\tau} \, d\tau \, d\tau \, d\tau$$
 (3) чим зависимость поврежденной (занятой усталостной трещино

получим зависимость поврежденной (занятой усталостной трещинов)

площади сечения Fn от времени - Fn(z).

Последовательное вычисление с помощью ЭВМ значений dFn/dr , коэффициента интенсивности напряжений K, позволяет установить момент разрушения. Он определяется по одному из тры условий, которые (с некоторым приближением) равнозначны:

$$I) \quad G_{\kappa}^{\kappa} = G_{g}^{ucm} \tag{4}$$

2)
$$K_1 = K_{1c}$$
; (5)

2) $K_1 = K_{1c}$; (5) 3) скорость роста трещины $\frac{dF_n}{d\tau}$ достигает значительной величины и весьма быстро растет; принято

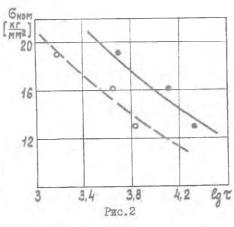
$$\left(\frac{dF_n}{d\tau}\right)_{pagp} \approx 10^{-2} F_o \frac{mm^2}{cek}$$
 (6)

 $(\frac{dF_n}{d\tau})_{palp} \approx 10^{-2} F_o \frac{mm^2}{cek}$. (6) Здесь G_b^{ucm} — истинный предел прочности материала, K_{1C} — критическое значение коэффициента интенсивности напряжений, Fa - начальная площадь сечения.

Использование поврежденной площади 🖺 в качестве меры повреждения позволяет определить долговечность при программной олучайной нагрузке.

В соответствии с изложенной методикой были проведены расчеи долговечности образцов и конструкций из различных материалов
различными поперечными сечениями при различных нагружениях
им., например, [4], [5]). Удовлетворительное совпадение расчетих и экспериментальных данных, наряду с физической возможностью
восмотренной модели, позволяет использовать ее для прогнозироилия и анализа параметров разрушения. Авторам неизвестен в натоящее время какой-либо другой метод, обеспечивающий получение
налогичных результатов.

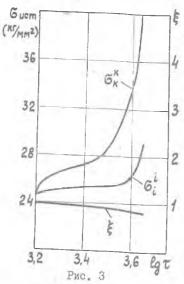
Прогнозирование и анализ параметров разрушения проведем для упомянутого выше плоского образца с отверстием, выполненного из штериала Д16АТ и нагруженного знакопеременным изгибом по симметричному циклу при $G_{HOM} = 19,07$ кг/мм² в условиях жесткого нагрушения.


где $\mathfrak{C}_{\mathfrak{C}}$ — упругий коэффициент концентрации напряжений при изгибе пластины с отверстием, Ψ — редукционный коэффициент, учитывающий пелинейность диаграммы растяжения [I].

На рис. 2 нанесены расчетные и экспериментальные * значения *

2. Средне-интегральное напряжение на участке $\Delta \times (\Delta y)$ (рис. I), равном размеру элемента, приминающего к устью трещины, определяется из виражений:

$$G_{x}^{K} = \frac{\int_{0}^{\Delta y} G_{y} dx}{\Delta x} = \frac{\sqrt{2} K_{1}^{K}}{\sqrt{\pi \Delta x}} \Psi_{K} \Psi (7)$$


$$G_{1}^{L} = \frac{\int_{0}^{\Delta y} G_{x} dy}{\Delta U} = \frac{\sqrt{2} K_{1}^{L}}{\sqrt{\pi \Delta U}} \Psi_{1} \Psi (8)$$

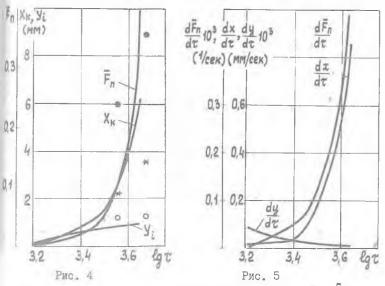
^{*} Эксперимент проведен в КуАИ Б.А. Давровым.

K" = G δρ. χ JT & λκ. (9)

Здесь G_{K}^{K} , G_{L}^{L} - напряжение в волокне K(L) в момент его разрушения; $K_{L}^{K}(K_{1}^{L})$ - коэффициент интенсивности напряжений при размерах трещини, достигшей волокна K(l) [7]; ψ - коэффициент. учитывающий влияние аслиметрии циклических напряжений, имеющей место вследствие смыкания трещины в сжатой зоне [6], \mathcal{E}_{κ} - длини трещины; $\hat{\Lambda}_{\mathbf{k}}$ - поправочная функция, определяемая в соответствии с [7]; $6_{5\rho,\kappa} = 6_{5\rho,\sigma} \cdot \xi$; $6_{5\rho,\sigma}$ напряжение в орутто-сечении в начальный момент времени; ξ — коэффициент, учитывающий релаксации внешней нагрузки при жестком нагружении [I].

Изменение напряжений по времени показано на рис. 3.

Напряжение 6 непрерывно растет из-за увеличения коэффициента интенсивности напряжений К., обусловленного ростом длины трещины $\ell_{\scriptscriptstyle R}$ и поправочной функции 🕽 [7]. Однако на начальном, участке рост б замедляетии, падает. Это объясняется


dgx Из формулы (7) видно, что пропорционально dx1.
Полагая на начальном участке λг. [≈I, запишем последнюю произволь ную в виде

Отсюда видно, что рост, ℓ_{κ} при слабом изменении $\frac{d\ell_{\kappa}}{dt}$ при слабом изменении $\frac{d\ell_{\kappa}}{dt}$.

возрастает, что наряду с ростом ловливает увеличение , особенно интенсивное в моменчи времени, близкие к разрушених

об подчиняются тем же закономерностям, но так - расстояние волокна до нейтральной оси сече-Напряжения

(ми), то вследствие падения h_i начальный участок кривой \mathcal{G}_i^i (τ) олее пологий. В моменти, близкие к разрушению, \mathcal{G}_i^i интенсивно метет главным образом вследствие роста параметра $\hat{\lambda}$.

3. Относительная поврежденная площадь сечения $\vec{F}_n = \frac{\vec{F}_n}{\vec{F}_n}$ непрерывно возрастает (рис. 4), также как интенсивности (рис. 5), остигая предельных значений в момент разрушения. При этом значению (\vec{F}_n) разр соответствует статическое разрушение от внешней вигрузки с учетом ее релаксации, а $\left(\frac{d\vec{F}_n}{dT}\right)$ разр $\approx 10^{-2}$ I/сек.

На рис. 4, 5 показани также изменения параметров $X_{\mathbf{k}}$, \mathbf{y}_{i} , по времени. Более интенсивное изменение $X_{\mathbf{k}}$ по сравнению с \mathbf{y}_{i} обусловлено тем, что \mathbf{g}_{i} существенно превышает \mathbf{g}_{i} . Однако в начальные моменты времени \mathbf{g}_{i} вследствие меньшего градиента напряжений вдоль оси \mathbf{y}_{i} до момента появления трещини, что привело к более интенсивному накоплению повреждений в элениях, расположенных по оси \mathbf{y}_{i} .

Точками на рис: 4 показаны некоторые экспериментальные вначения X_k : Y_k , \overline{F}_n , полученные в результате статического полома образцов, имевших различную наработку.

- 4. Релаксация внешней нагрузки в условиях жесткого нагружения образца (при фиксированных перемещениях точки приложении силы) оценивалась величиной $\xi = P\tau/p$, которая определялась в соответствии с [I]. Здесь $P\tau$, P_0 значения внешней нагрузки в текущий и начальный моменты времени. Изменение ξ показано парис. 3. Его значение в начале распространения трещины мало отличается от единицы и в дальнейшем убывает.
- 5. Время T до разрушения для рассмотренного образца, определенное расчетом по критериям (4), (5), (6), практически одинаково и составляет 4430—4450 сек. При этом принято $G_g = 46$ $(\frac{d\tilde{E}_T}{d})_{0.330} \approx 10^{-2}$ $1/c\epsilon\kappa$, $K_{sp} \approx 223$ $K_{sp} / mm^{3/2}$.

 $(\frac{dE_D}{dz})_{Pa3P} \approx 10^{-2}$ //сек, $K_{1C} \approx 223$ кг/мм $^{3/2}$. Нам представляется наиболее сложным выбор надлежащего эпечения критического коэффициента интенсивности напряжений с учетом вида напряженного состояния и многочисленных факторов, влияющих на K_{1C} . На рис. 2 нанесена расчетны кривая усталости по разрушению и экспериментальные значения полной долговечности T. Следует обратить внимание на практически независимое от уровня напряжений отношение T/T. Этот факт отмечен в литературе и обоснован теоретически в работе [8].

Литература

- І. Мостовой А.С. Определение долговечности образца на основе некоторых представлений о механизме усталостного разрушения. В сб.: Вопросы прочности элементов авиационных конструкций, вып. 39, изд. КуАИ, 1968.
- 2. Вагапов Р.Д. Статистические и детерминистические законо мерности усталости и возможность их моделирования. В кн.: Вопросы механической усталости. М., "Машиностроение", 1964.
- 3. Дуплякин В.М., Мостовой А.С. К вероятностному расчету кривых усталости деталей по результатам испытания лабораторных образдов. В межвуз. сб.: Вопросы прочности элементов авиационым конструкций, вып. І, Куйбышев, 1974.
- 4. Мостовой А.С., Козлов А.А., Фролова Л.К., Чураков А.А. Определение долговечности конструктивного элемента на основе некоторых представлений о механизме усталостного разрушения.

роблемы прочности", № 3, Киев. 1972.

- 5. Мостовой А.С., Дуплякин В.М., Прохоров А.Г., Юдин В.Г. огнозирование усталостной долговечности стальных проушин на идии проектирования изделия. В межвуз. сб.: Вопросы прочности полговечности элементов авиационных конструкций, вып. 3, вышев, 1977.
- 6. Мостовой А.С., Дубовицкий С.В. О влиянии усталостной ощины на характеристики циклов напряжений. В сб.: Усталост- прочность и долговечность авиационных конструкций, вып. I, ж. КуАИ, 1974.
- 7. Махутов Н.А. Сопротивление элементов конструкций хрупко-разрушению. М., "Машиностроение", 1973.
- 8. Мостовой А.С., Дуплякин В.М. К вопросу о подобии устаотного разрушения. — В сб.: Прочность, надежность и долговечсть авиационных конструкций, вып. I. Киев, 1975.