Сомов Е.И., Бутырин С.А.

ФИЛЬТРАЦИЯ ИЗМЕРЕНИЙ И КАЛИБРОВКА АСТРОИНЕРЦИАЛЬНОЙ СИСТЕМЫ ОПРЕДЕЛЕНИЯ УГЛОВОГО ПОЛОЖЕНИЯ МАНЕВРИРУЮЩЕГО СПУТНИКА ЗЕМЛЕОБЗОРА

Введение. Рассматривается астроинерциальная система определения углового положения (СОУП) маневрирующего космического аппарата (КА). Данная система содержит инерциальный измерительный модуль (ИИМ) в виде жёстко закреплённых на корпусе КА гироскопических измерителей приращений квазикоординат углового положения КА и астрономическую систему (АС) на основе звёздных датчиков с широким полем зрения, также закреплённых на корпусе спутника. СОУП входит в состав бесплатформенной инерциальной навигационной системы (БИНС), которая решает общую задачу навигации – определения как ориентации, так и местоположения спутника. Предложенный в [1, 2] подход к обработке сигналов в астроинерциальной СОУП развивается для маневрирующих КА оптико-электронного наблюдения Земли. Проблемы такой обработки связаны с интегрированием кинематических уравнений по информации только о векторе дискретных приращений угловых квазикоординат (псевдоуглов), получаемого ИИМ при наличии шумов измерений, с калибровкой (идентификацией и компенсацией вектора дрейфа ИИМ \mathbf{b}^{g} и погрешности m масштабного коэффициента измерения вектора угловой скорости ω) и с юстировкой – идентификацией и компенсацией погрешности взаимной угловой установки систем координат ИИМ и АС на основе доступных сигналов AC с периодом дискретности T_{o} , существенно превосходящего периоды дискретности выходных сигналов ИИМ T_q и СОУП T_p .

При решении подобных задач многими авторами использовались кинематические параметры в виде кватерниона $\mathbf{\Lambda}=(\lambda_0,\lambda)$, матрицы ориентации \mathbf{C} , вектора Эйлера $\mathbf{\phi}=\mathbf{e}\,\theta$, вектора конечного поворота $\mathbf{\theta}=2\mathbf{e}\,\operatorname{tg}(\theta/2)$ и др. При этом для медленных угловых движений КА с малой вариацией угла θ и практически неизменным направлением орта Эйлера \mathbf{e} на периоде дискретности T_o интегрирование кинематических соотношений для вектора Эйлера и получение значений кватерниона $\mathbf{\Lambda}_k \equiv \mathbf{\Lambda}(t_k)$ выполнялось по схеме $\delta \mathbf{\phi}_k = \mathbf{i}_k^\omega = \int_{t_k}^{t_{k+1}} \mathbf{\omega} \left(\tau \right) d\tau \equiv \operatorname{Int}(t_k, T_o, \mathbf{\omega}(t)), \quad \mathbf{\phi}_k + \delta \mathbf{\phi}_k = \mathbf{\phi}_{k+1} \Rightarrow \mathbf{C}_{k+1} \Rightarrow \mathbf{\Lambda}_{k+1}, \quad \text{где} \quad \delta \mathbf{\phi}_k = \delta \theta_k \mathbf{e}_k,$ $t_{k+1} = t_k + T_o, \quad k \in \mathbf{N}_0 \equiv [0,1,2,...)$. Угловое движение маневрирующего КА землеобзора осуществляется на последовательности временных интервалов выполнения маршрутов и

поворотных маневров (ПМ) с переменным направлением вектора $\boldsymbol{\omega}$, модуль которого может достигать 3 град/сек. В статье рассматривается классическая схема СОУП в составе БИНС, где основным измерителем является ИИМ с периодом T_q ; сигналы АС с периодом дискретности T_o , кратном периоду T_q , используются для его калибровки и юстировки. Применяются методы полиномиальной аппроксимации и интерполяции, а также нелинейный дискретный наблюдатель Луенбергера, где выполняется численное интегрирование кинематического уравнения для вектора модифицированных параметров Родрига (МПР) $\boldsymbol{\sigma} = \mathbf{e} \ \mathrm{tg}(\theta/4)$, который связан с кватернионом $\boldsymbol{\Lambda}$ соотношениями $\boldsymbol{\sigma} = \boldsymbol{\lambda}/(1+\lambda_0)$ ($\boldsymbol{\Lambda} \Rightarrow \boldsymbol{\sigma}$), $\boldsymbol{\lambda} = 2\boldsymbol{\sigma}/(1+\boldsymbol{\sigma}^2)$; $\lambda_0 = (1-\boldsymbol{\sigma}^2)/(1+\boldsymbol{\sigma}^2)$ ($\boldsymbol{\sigma} \Rightarrow \boldsymbol{\Lambda}$) и имеет кинематические уравнения $\dot{\boldsymbol{\sigma}} = \mathbf{F}^{\sigma}(\boldsymbol{\sigma}, \boldsymbol{\omega}) \equiv \frac{1}{4}(1-\boldsymbol{\sigma}^2)\boldsymbol{\omega} + \frac{1}{2}\boldsymbol{\sigma} \times \boldsymbol{\omega} + \frac{1}{2}\boldsymbol{\sigma} < \boldsymbol{\sigma}, \boldsymbol{\omega} >$; $\boldsymbol{\omega} = \mathbf{F}^{\omega}(\boldsymbol{\sigma}, \dot{\boldsymbol{\sigma}}) \equiv 4[(1-\boldsymbol{\sigma}^2)\dot{\boldsymbol{\sigma}} - 2(\boldsymbol{\sigma} \times \dot{\boldsymbol{\sigma}}) + 2\boldsymbol{\sigma} < \dot{\boldsymbol{\sigma}}, \boldsymbol{\sigma} >]/(1+\boldsymbol{\sigma}^2)^2$ при стандартном обозначении $\boldsymbol{\sigma} = \mathbf{b}$ скалярного произведения векторов \boldsymbol{a} и \boldsymbol{b} .

Постановка задач. Исходная измерительная информация с частотой ≈ 3 КГц предварительно обрабатывается в ИИМ и в результате от ИИМ поступают значения вектора приращений квазикоординат $\mathbf{i}_{\mathrm{m}s}^{\mathrm{g}\omega}$, $s\in\mathrm{N}_0$ с периодом $T_q<< T_o$, а от AC — измеренные значения кватерниона $\mathbf{\Lambda}_{\mathrm{m}k}^{\mathrm{a}}$, $k\in\mathrm{N}_0$ с периодом T_o : $\mathbf{i}_{\mathrm{m}s}^{\mathrm{g}\omega}=\mathbf{Int}(t_s,T_q,\boldsymbol{\omega}_{\mathrm{m}}^{\mathrm{g}}(t))+\boldsymbol{\delta}_s^{\mathrm{a}}$; $\boldsymbol{\omega}_{\mathrm{m}}^{\mathrm{g}}(t)\equiv(1+m)\mathbf{S}^{\Delta}(\boldsymbol{\omega}(t)+\mathbf{b}^{\mathrm{g}})$; $\mathbf{\Lambda}_{\mathrm{m}k}^{\mathrm{a}}=\boldsymbol{\Lambda}_k\circ\mathbf{\Lambda}_k^{\mathrm{a}}$. (1)

Здесь $\omega_{\rm m}^{\rm g}(t)$ представляет измеряемый вектор угловой скорости КА в базисе **G** ИИМ с учётом неизвестных малых и медленных вариаций вектора ${\bf b}^{\rm g}={\bf b}^{\rm g}(t)$ дрейфа ИИМ по угловой скорости; ортогональная матрица ${\bf S}^{\Delta}(t)$ описывает погрешности угловой установки базиса **G** относительно базиса **A** АС; скалярная функция m=m(t) представляет неизвестную медленную вариацию масштабного коэффициента ИИМ; учтены центрированные гауссовские шумы $\delta_s^{\rm n}$ со среднеквадратичным отклонением (СКО) $\sigma^{\rm b}$ и $\Lambda_k^{\rm n}$ с СКО $\sigma^{\rm a}$ в выходных сигналах ИИМ и АС соответственно. Предполагается малая вариация масштабного коэффициента ИММ, когда справедливо $1-m^2\cong 1$. Ставятся задачи дискретной фильтрации измерений ИММ с периодом T_q , калибровки и юстировки СОУП по сигналам АС с периодом T_o , а также цифровой фильтрации выходных сигналов СОУП с периодом T_p с получением дискретных значений

кватерниона $\mathbf{\Lambda}_l^{\mathrm{f}}$ и вектора угловой скорости $\mathbf{\omega}_l^{\mathrm{f}}$, $l \in \mathbf{N}_0$, которые используются для управления ориентацией.

Подход к решению задач. Формирование оценки $\hat{\mathbf{b}}_k^g$ вектора дрейфа ИИМ, постоянной на периоде T_o , выполняется в каждый момент времени t_k с помощью нелинейного дискретного наблюдателя Луенбергера, а оценки $\hat{\mathbf{S}}_k^\Delta$ и \hat{m}_k регулярно формируются off-line, т.е. на основе обработки доступной измерительной информации, накопленной на длительных временных интервалах [1, 2]. При дискретной фильтрации измерений вектора \mathbf{i}_{ms}^{go} в (1) с целью подавления дискретного шума ИИМ $\boldsymbol{\delta}_s^n$ применяется сочетание аппроксимации полиномом 3-го порядка $\hat{\mathbf{i}}_k^{go}(\tau)$ в скользящем окне 8 измерений по методу наименьших квадратов и сплайновой интерполяции по центрам смежных скользящих окон полиномом 5-го порядка $\hat{\mathbf{i}}_k^{go}(\tau) = \hat{\mathbf{i}}_k^{go}(\tau) - \hat{\mathbf{b}}_k^g \tau$ для локального времени $\tau = t - k T_o \in [0, T_o]$ (рисунок 1). В базисе \mathbf{A} оценка вектора приращений квазикоординат $\hat{\mathbf{i}}_s^o$, $s \in \mathbb{N}_0$ формируется по соотношению $\hat{\mathbf{i}}_s^o = (1 - \hat{m}_k)(\hat{\mathbf{S}}_k^\Delta)^\dagger \hat{\mathbf{i}}_s^{go}$. Погрешности цифровой фильтрации выходных сигналов СОУП представлены на рисунке 2. Авторские методы калибровки и юстировки СОУП по сигналам АС кратко представлены в [3].

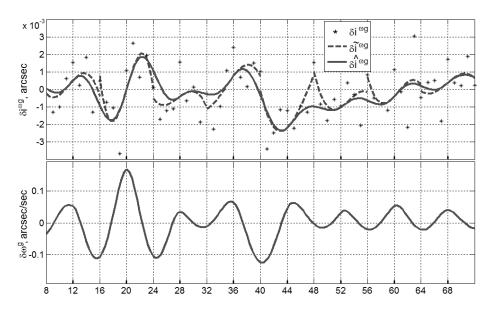


Рисунок 1 – Погрешности двухпроходной техники фильтрации измерений ИММ

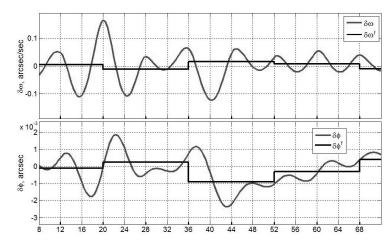


Рисунок 2 – Погрешности цифровой фильтрации выходных сигналов СОУП

Результаты компьютерной имитации. Пусть для КА на солнечно-синхронной орбите высотой $H = 600\,$ км и наклонением $i = 97,8\,$ град имеется задание на оптико-электронную съёмку окрестностей двух российских столиц (рисунок 3) в такой последовательности временных интервалов:

- (i) ориентация корпуса КА в орбитальном базисе $\forall t \in [0,840)$ с;
- (ii) поворотный манёвр ПМ1 длительностью $40 \text{ c } \forall t \in [840,880) \text{ c};$
- (ііі) маршрут М1 съёмки с выравниванием продольной скорости движения изображения длительностью 40 с $\forall t \in [880,920)$ с при начальной точке с долготой L=54,3 град, широтой B=38,4 град и геодезическим азимутом A=-11 град;
 - (iv) поворотный манёвр ПМ2 длительностью 55 с $\forall t \in [820,975)$ с;
- (v) маршрут M2 трассовой съёмки длительностью 20 с $\forall t \in [975,995)$ при начальных углах крена $\phi_1 = 14$ град и тангажа $\phi_3 = 0$ ориентации KA в орбитальном базисе.

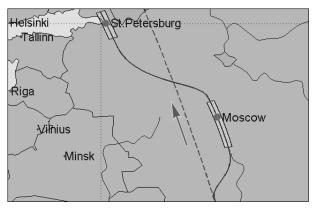


Рисунок 3 – Маршруты съёмки двух российских столиц на карте

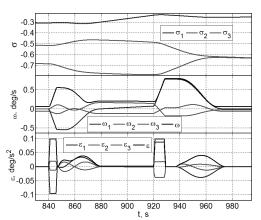


Рисунок 4 – Закон углового наведения KA при съёмке двух столиц



Рисунок 5 – Погрешности оценки вектора дрейфа ИИМ в базисе **G**

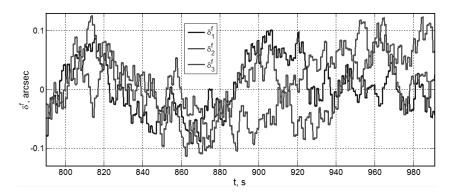


Рисунок 6 – Погрешности СОУП при определении ориентации КА

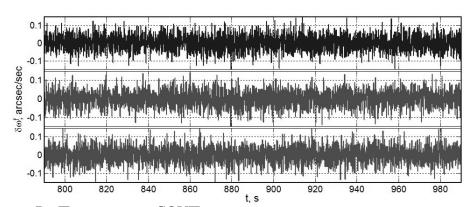


Рисунок 7 – Погрешности СОУП при определении вектора угловой скорости

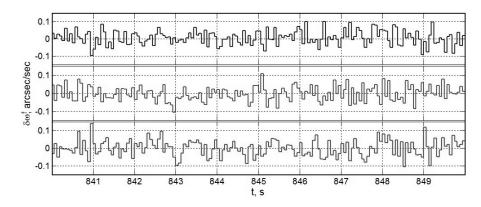


Рисунок 8 — Погрешности СОУП при определении угловых скоростей (фрагмент рисунка 7)

Закон наведения (программное угловое движение) КА землеобзора задаётся вектором МПР $\sigma^p(t)$ (рисунок 2). При имитации были приняты СКО $\sigma^a=0,33$ угл. сек на частоте 1 Γ ц для погрешности АС и $\sigma^b=0,001$ угл. сек на частоте 128 Γ ц для шумов измерений вектора псевдоуглов $\mathbf{i}_{ms}^{\mathbf{g}\omega}$. Параметры наблюдателя Луенбергера выбраны из условия близости его качества к качеству оценки дрейфа ИИМ фильтром Калмана, когда тестовый вектор дрейфа ИИМ $\mathbf{b}^g=\{1;-0,8;0,3\}$ угл. сек/сек восстанавливается за время ≈ 60 . На рисунке 5 представлены погрешности $\delta \hat{\mathbf{b}}_k^g = \mathbf{b}_k^g - \hat{\mathbf{b}}_k^g$ оценки вектора дрейфа ИИМ в базисе \mathbf{G} . В моменты времени t_l с периодом $T_p=0,125$ с (частота 8 Γ ц) погрешность оценки ориентации представляется вектором $\delta_l=4\sigma_l^\delta$, где вектор МПР σ_l^δ соответствует угловому рассогласованию. Цифровая фильтрация вектора δ_l с частотой 8 Γ ц даёт вектор $\delta^{\Gamma}(t)$, его компоненты изображены на рисунке 6. На рисунках 7, 8 приведены погрешности СОУП при определении вектора угловой скорости и цифровой фильтрации значений его компонентов с той же частотой 8 Γ ц, (рисунок 2).

Работа поддержана РФФИ (грант 14-08-01091) и Отделением ЭММПУ РАН (программа фундаментальных исследований № 13).

Библиографический список

- 1. Somov, Ye.I. Multiple algorithms for filtration, integration and calibration of a strap-down inertial system for a spacecraft attitude determination // Proceedings of 16th Saint Petersburg International Conference on Integrated Navigation Systems. 2009. P. 110-112.
- 2. Somov, Ye.I., Butyrin, S.A. Digital signal processing, calibration and alignment of a strap-down inertial system for attitude determination of an agile spacecraft // Proceedings of 17th Saint Petersburg International Conference on Integrated Navigational Systems. 2010. P. 81-83.
- 3. Сомов, Е.И. Полетная юстировка и калибровка астроинерциальной системы для определения ориентации маневрирующего информационного спутника [Текст] / Е.И. Сомов, С.А. Бутырин С.А. // Материалы 27 конференции памяти Н.Н. Острякова. СПб.: Концерн «ЦНИИ Электроприбор». 2012. С. 18-20.