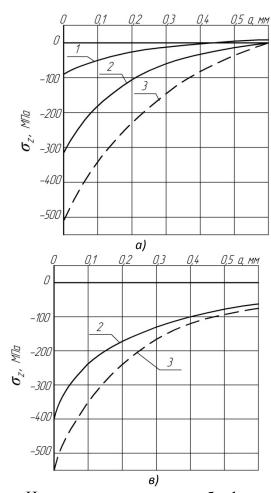
Павлов В.Ф., Семёнова О.Ю., Злобин А.С., Киселёв П.Е.

УЧЁТ МАСШТАБНОГО ФАКТОРА ПРИ ПРОГНОЗИРОВАНИИ ПРЕДЕЛА ВЫНОСЛИВОСТИ ПОВЕРХНОСТНО УПРОЧНЁННЫХ ДЕТАЛЕЙ


Для исследования влияния размеров поперечного сечения на предел выносливости упрочнённых деталей в условиях концентрации напряжений были проведены эксперименты на сплошных цилиндрических упрочнённых и неупрочнённых образцах диаметром 10, 25 и 50 мм из стали 20 с круговыми надрезами полукруглого профиля.

Гладкие образцы подвергались пневмодробеструйной обработке (ПДО), а также обкатке роликом при усилии $0.5 \, \mathrm{kH}$ (OP1) и $1.0 \, \mathrm{kH}$ (OP2). Затем на все упрочнённые и неупрочнённые гладкие образцы наносились круговые надрезы полукруглого профиля радиуса $R = 0.5 \, \mathrm{mm}$. Остаточные напряжения в гладких образцах определялись экспериментально методом колец и полосок [1]. Остаточные напряжения в образцах с надрезами вычислялись как аналитическим [2], так и численным методами с использованием программного комплекса Nastran/Patran [3]. Следует отметить, что результаты определения дополнительных остаточных напряжений двумя методами имели хорошее совпадение.

Распределение осевых σ_z остаточных напряжений по толщине поверхностного слоя a в наименьшем сечении образцов с надрезом R=0,5 мм приведено на рис. 1, а значения остаточных напряжений на поверхности дна надреза σ_z^{nos} представлены в табл. 1. Можно видеть, что при одной и той же упрочняющей обработке сжимающие остаточные напряжения на поверхности надреза σ_z^{nos} с увеличением диаметра образца увеличиваются. Этот факт объясняется увеличением сжимающих остаточных напряжений и глубины их залегания в упрочнённых гладких образцах с увеличением их диаметра.

Испытания на многоцикловую усталость при изгибе в случае симметричного цикла неупрочнённых и упрочнённых образцов диаметром 10 мм в гладкой части проводились на машине МУИ-6000, диаметром 25 мм — на машине УММ-01, диаметром 50 мм — на машине УМП-02; база испытаний — $3\cdot10^6$ циклов нагружения. Результаты определения предела выносливости σ_{-1} представлены в табл.1. Упрочнённые образцы, выстоявшие базу испытаний при напряжении, равном пределу выносливости, доводились до разрушения при бо́льших напряжениях. На изломах этих образцов были обнаружены

нераспространяющиеся трещины усталости, глубина $t_{\kappa p}$ которых приведена в табл. 1.

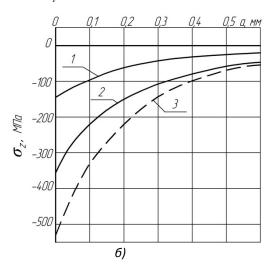


Рис. 1. Осевые σ_z остаточные напряжения в упрочнённых образцах диаметром 10 мм (а), 25 мм (б) и 50 мм (в) с надрезами R=0.5 мм после: $1-\Pi DO$, 2-OP1, 3-OP2

Из представленных в табл. 1 данных видно, что опережающее поверхностное пластическое деформирование пневмодробеструйной обработкой и обкаткой роликом приводит к повышению предела выносливости образцов с надрезом. Наиболее эффективна для исследованных образцов обкатка роликом, причём с увеличением усилия обкатки с 0,5 кН до 1,0 кН предел выносливости возрастает. Наблюдаемое явление объясняется большей глубиной залегания сжимающих остаточных напряжений в гладких упрочнённых образцах при увеличении усилия обкатки, результатом чего явилось повышение остаточных напряжений в образцах с надрезом (рис. 1).

Оценка влияния поверхностного упрочнения на приращение предела выносливости $\Delta\sigma_{-1}$ образцов с надрезом проводилась по двум критериям: осевым остаточным напряжениям на поверхности надреза σ_z^{nos} и среднеинтегральным остаточным напряжениям $\overline{\sigma}_{ocm}$ [4]

$$\Delta \sigma_{-1} = \psi_{\sigma} \left| \sigma_{z}^{nog} \right|, \tag{1}$$

$$\Delta \sigma_{-1} = \overline{\psi}_{\sigma} \left| \overline{\sigma}_{ocm} \right|, \tag{2}$$

где ψ_{σ} и $\overline{\psi}_{\sigma}$ – коэффициенты влияния поверхностного упрочнения на предел выносливости по критериям σ_z^{nos} и $\overline{\sigma}_{ocm}$, соответственно.

Таблица 1 – Результаты испытаний образцов на усталость

и определения остаточных напряжений

D_1 ,	D,	Неупрочнённые	Упрочнённые образцы						
		образцы $\sigma_{{}_{ ext{}1}},$	обработка	$\sigma_{\scriptscriptstyle{-1}},$	$\sigma_{z}^{{\scriptscriptstyle noe}}$,	ψ_{σ}	$t_{\kappa p}$,	$\overline{\sigma}_{\scriptscriptstyle ocm},$	$\overline{\psi}_{\sigma}$
MM	IVIIVI	МПа		МПа	МΠа		MM	МПа	
10	9	120	ПДО	137,5	-90	0,194	0,196	-48	0,365
			OP1	187,5	-311	0,217	0,202	-178	0,379
			OP2	250	-517	0,251	0,192	-333	0,390
25	24	112,5	ПДО	130	-142	0,123	0,525	-52	0,337
			OP1	150	-349	0,107	0,530	-111	0,338
			OP2	172,5	-525	0,114	0,520	-169	0,355
50	49	92,5	OP1	122,5	-396	0,078	1,077	-82	0,366
			OP2	132,5	-547	0,073	1,024	-112	0,357

С увеличением диаметра образцов от 10 мм до 50 мм приращение предела выносливости при одних и тех же режимах упрочняющей обработки уменьшается. Это связано с тем, что толщина слоя со сжимающими остаточными напряжениями при возрастает незначительно ПО сравнению с толщиной увеличении диаметра поверхностного слоя образцов, ответственной за повышение многоцикловой усталости и равной критической глубине $t_{\kappa n}$ нераспространяющейся трещины усталости. Поэтому для сохранения эффекта упрочнения с увеличением диаметра детали следует увеличивать толщину упрочнённого поверхностного слоя (толщину слоя со сжимающими пропорционально остаточными напряжениями) критической глубине нераспространяющейся трещины усталости.

Из анализа приведённых в табл. 1 данных видно, что оценка влияния поверхностного упрочнения на предел выносливости образцов различного диаметра в условиях концентрации напряжений по критерию σ_z^{nos} — остаточным напряжениям на поверхности концентратора — приводит к значительному рассеянию соответствующего коэффициента ψ_σ . Этот коэффициент в проведённом исследовании изменяется в широких пределах: от 0,073 до 0,251, то есть изменяется почти в 3,5 раза, что неприемлемо для прогнозирования предела выносливости поверхностно упрочнённых деталей.

Оценка влияния поверхностного упрочнения по критерию $\overline{\sigma}_{ocm}$ – среднеинтегральным остаточным напряжениям – приводит к существенно ме́ньшему рассеянию соответствующего коэффициента $\overline{\psi}_{\sigma}$. Коэффициент $\overline{\psi}_{\sigma}$ в проведённом

исследовании изменяется от 0,337 до 0,390, составляя в среднем 0,361, и практически не отличается от значения $\overline{\psi}_{\sigma} = 0,36$, установленного в работе [5] для упрочнённых образцов и деталей с аналогичной концентрацией напряжений.

Таким образом, использование критерия среднеинтегральных остаточных напряжений при прогнозировании влияния поверхностного упрочнения на предел выносливости деталей различного диаметра позволяет учитывать масштабных фактор.

Библиографический список

- 1. Иванов, С.И. К определению остаточных напряжений в цилиндре методом колец и полосок [Текст] / С.И. Иванов // Остаточные напряжения. Куйбышев: КуАИ. 1971. Вып. 53. С. 32-42.
- 2. Иванов, С.И. Влияние остаточных напряжений на выносливость образцов с надрезом [Текст] / С.И. Иванов, М.П. Шатунов, В.Ф. Павлов // Вопросы прочности элементов авиационных конструкций. Куйбышев: КуАИ. 1974. Вып.1. С. 88-95.
- 3. Сазанов, В.П. Моделирование перераспределения остаточных напряжений в упрочнённых цилиндрических образцах при опережающем поверхностном пластическом деформировании [Текст] / В.П. Сазанов, А.В. Чирков, В.А. Самойлов, Ю.С. Ларионова // Вестник СГАУ. 2011. №3 (27). Ч.3. С. 171-174.
- 4. Павлов, В.Ф. О связи остаточных напряжений и предела выносливости при изгибе в условиях концентрации напряжений [Текст] / В.Ф. Павлов // Известия вузов. Машиностроение. -1986. -№8. -C. 29-32.
- 5. Павлов, В.Ф. Прогнозирование сопротивления усталости поверхностно упрочнённых деталей по остаточным напряжениям [Текст] / В.Ф. Павлов, В.А. Кирпичёв, В.С. Вакулюк. Самара: Изд-во СамНЦ РАН, 2012. 125 с.