$$\Delta \mu(x,y) = C \sum_{i=1}^{2} \exp\left[-\left((x-x_{i}')^{2} + y^{2}\right)/2d^{2}\right],$$

$$x_{i}' = 0.2, \quad x_{2}' = -0.2, \quad d = 0.15.$$

Параметр C изменялся от нуля до 2,5; тем самым варьировалась степень неоднородности ослабления. Качество восстановления оценивалось по локальной в интегральной погрешностям

$$\sigma_{unm} = \sqrt{\int \int (\varepsilon_{80ccr}(x,y) - \varepsilon(x,y))^2 dx dy} / \int \int \varepsilon^2(x,y) dx dy} 100\%,$$

$$\sigma_{nox} = mox / \varepsilon_{80ccm}(x,y) - \varepsilon(x,y) / / mox / \varepsilon(x,y) / 100\%.$$

Библиографический список

- I. Пикалов В.В., Преображенский Н.Г. Реконструктивная томография в газодинамике и физике плазмы. Новосибирск: Наука, Сиб. отд-нве, 1987. 232 с.
- 2. Кунянский Л.А. Итеративное обращение экспоненциального преобразования Радона по малому числу проекций с помощью сплайновых алторитмов/Методы диагностики двухфазных и реагирующих потоков /Теа. докл. I Всесоюз.науч.-техн.конф. /Харьков, 1988.

УДК 616.07;535.853 П.И.Кулик, В.В.Иванов, А.А.Комиссаров, Л.И.Поплевина, И.М.Тоюмулин

ABTOMATICAN POBATHEM CHEKTPANEHO-TOMO PPAONIECKUM KOMENEKC

Описан автоматизированный томографический комплекс для исследования плазменного потока сложной конфигурации. В основе разработанного алгоритма лежит обращение двумерного преобразования Радона в схеме веерного пучка. Представлены результаты математического моделирования, качественные и количественные оценки вычислений при реализации данного алго-

Вычислительная томография. Куйоншев, 1990

ритма. Получены профили собственного излучения, температуры и энтальпии исследуемого плазменного потока по всей высоте.

Применение оптической эмиссионной томографии в технологии микровлектроники при разработке и оптимизации плазменных процессов очистки, травления и осаждения тонких пленок различных материалов является наиболее эффективным из известных методов диагностики плазмы. Использование данного способа диагностики позволяет без внесения извне возмущений получать богатую информацию о пространственном распределении параметров оптического излучения плазмы, например, в плоскости над обрабатываемой поверхностью, в удобном для технолога графическом или табличном виде. Необходимо отметить, что данный способ повышает воспроизводимость технологического процесса при использовании его в качестве контроля над параметрами плазмы, их пространственным распределением.

Создание и использование настоящего спектрально-томографического комплекса обусловлено разработкой нового метода динамической плазменной обработки (ДПО) [1] для различных технологических целей. Суть
этого метода заключается в кратковременной обработке поверхности твердого тела в режиме нестационарной теплопроводности высокознтальпийным, существенно неоднородным в пространстве, потоком плазмы. Высокая
скорость протекания процессов при ДПО диктует необходимость применения контроля пространственного распределения параметров плазмы с целью достижения высокой равномерности и воспроизводимости этого процесса.

Общая схема системы диагностики представлена на рисунке. Данная автоматизированная система построена на базе микроЗЕМ МРЯ—102, которая через интерфейс связана с видиконом. Видикон смонтирован на спектрографе ДФС-452. Оптическая система регистрации спектров установлена на линейке спектрографа. Линейка и входная щель спектрографа сриентированы на центр подложкодержателя непосредственно в его плоскости. Такая геометрия системы позволяет регистрировать змиссионные спектры плазменного потока в том сечении плазмы, в котором производится обработка [2].

В плоскости подложнодержателя установлена также система томографических измерений. Оптический центр томографической системы совмещен с центром подложнодержателя. Томографическая информация через вспомогательные устройства, световод и оптический переключатель проектируется на матрицу видикона. Считанная с матрицы видикона информация о восъми проекциях поступает на обработку в микроЭВМ.

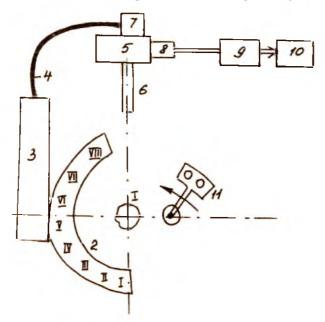


Рис. Схема автоматизированного спектрально-томографичес-кого эмиссионного комплекса: I - область существования плаз-мы; 2 - система томографических измерений; 3 - вспомогательные устройства системы; 4 - ориентированный световод; 5 - спектограф ДФС-452; 6 - оптическая линейка спектографа; ? - оптический переключатель; 9 - видикон; 9 - интерфейс; 10 - микро-ЭВМ; 11 - подложкодержатель

Как отмечалось выше, в качестве приемника томографической информации использовался видикон S Т-500 (ФРГ) спектроанализатора М F R -102, который представляет собой матричное фотоприемное устройство.
На кремниевой мишени видикона изготовлена матрица фотодиодов. Диаметр
матрицы 16 мм. Размер фотодиодов 25х25 мкм². Квант излучения, попадающий на мишень, генерирует пару носителей электрон-дырка. Электроны за счет поданного на мишень положительного нотенциала стекают с
мишени, з дырки накапливаются в своеобразной потенциальной яме. При
считывании информации с мишени электронным лучом происходит рекомби-

нация дырок с поступающими электронами. Ток считывающего луча характериаует степень засветки матрицы видикона. Время хранения информации на мишени ограничивается темновым током видикона, т.е. тепловой рекомбинациай дырок в потенциальной яме [3]. Контродлер видикона выполнен таким образом, что позволяет дискритизировать матрицу на 256 строк и 500 столбцов. Каждая ячейка в матрице содержит в среднем 4 фотодисда. Чувствительность видикона $\mathcal{N}_{\varphi} = 2400$ фотон с длиной волны $\mathcal{A} = 650$ мм, попадающих на матрицу за $\Delta \mathcal{E} = 64$ мс. Каждая проекция при томографировании занимает I строку видикона. Время считывания I строки составляет $\mathcal{Z} = 64$ мкс.

Геометрическая схема томографирования устроена так, что фокусы приемников располагаются на полуокружности радиуса $\mathcal{R}/$, при атом генератор плазменного потока перемещают по вертикальной оси таким образом, чтобы плазменный поток, пересеквющий плоскость приемников излучения, всегда был сосредоточен в круге радиуса $\mathcal{R} < \mathcal{R}/$; при втом систему измерения реализуют по схеме "веерного пучка": центральные лучи образуют веер с равномерным шагом по углу, исходящий из оптического центра, а детекторы каждого приемника принимают лучи, образующие веер с центром в фокусе приемника с переменным шагом по углу. Такая схема измерения позволила реализовать при максимально возможном приближении в приемников излучения к плазменному потоку необходимый радиус $\mathcal{R}=30$ мм видения для томографической диагностики.

Разработан специальный "выпрямляющий" алгориты для данной томо-графической системы. Алгориты основан на интегральной формуле обращения преобразования Радона в плоскость, которая с помощью соответствующей замены переменных приведена к такому виду, что значения функции g(x,y), от которой образовано подыятегральное выражение, известны на прымоугольной сетке значений переменных интегрирования:

$$f(X_1,X_2)=-\frac{1}{2\pi^2}\int\limits_{\mathcal{S}}\frac{\frac{\partial g(x,y)}{\partial x}}{\frac{\partial x}{x-\rho\cos(y+\arccos(-x/R_1)-y)}}\frac{1}{x^2}dxdy,$$

где ρ, φ - полярные косрдинаты точки (X_1, X_2) ;

$$x_1 = \rho \cos \varphi$$
, $x_2 = \rho \sin \varphi$;
 $g(x, y) = f(x, y + a \cos \cos (-x/R_1))$;

 $f'(\rho,\theta)$ — значение интеграла от функции $f(X_1,X_2)$ вдоль прямой. Определяемой параметрами ρ и θ :

$$f(p,\theta) = \int f(x_1, x_2) d\ell = x_1 \cos\theta + x_2 \sin\theta - p = 0$$

$$= \int f(p\cos\theta + t\sin\theta, p\sin\theta - t\cos\theta) dt$$

$$= \sqrt{R^2 - p^2}$$

(преобразование Радона функции $f(X_1, X_2)$);

$$Q = \{(x,y): -R \leq X \leq R,$$

$$\frac{\pi}{2} - \delta_0 - azccos\left(-\frac{x}{R_1}\right) < \psi < \frac{3}{2}\pi - \delta_0 - azccos\left(-\frac{x}{R_1}\right)$$

При этом интеграл надо понимать как предел при $\mathcal E$, стремящемся к нулю ($\mathcal E > \mathcal O$), интегралов ($\mathbf I_{\mathcal E}$) от того же выражения по областям $\mathcal Q_{\mathcal E}$, полученным из $\mathcal Q_{\mathcal E}$ удалением особой полосы, характеризуемой параметром $\mathcal E$ ("шириной"), и содержащей кривую, в точках которой знаменатель подынтегрального выражения равен нулю.

Значения функции $\mathcal{F}(p,\theta)$ известны в наборе точек ($\mathcal{P}_{\mathcal{K}_i}$), связанных соотношением:

$$\theta_{kj} = azccos\left(-\frac{\rho_{kj}}{R_1}\right) + \Delta_0 + (j-1)\Delta; \ P_{kj} = R_1 \frac{\delta_k}{\sqrt{R_2^2 + \delta_k^2}} \ .$$

Параметры $\mathcal{P}_{\mathcal{K}_j}$ $\mathcal{P}_{\mathcal{K}_j}$ определяют луч, принимаемый к-м детектором в j -м приемнике

$$(j=1,...,M; K=-M,...,-1,0,+1,...,M);$$

 \mathcal{O}_{k} - линейная координата в приемнике, геометрически представляющем отрезок длины \mathcal{R}_{3} к-го детектора;

 $\widetilde{\mathcal{O}_{\mathcal{O}}} = 0$ - координата центрального детектора, расположенного в середине отрезка-приемника

$$\delta_{-N} = -R_3/2$$
, $\delta_N = R_3/2$;

 \mathcal{R}_{ℓ} - расстояние между фокусами и оптическим центром;

 \mathcal{R}_2 — расстонние от центральных детекторов до соответствующих фокусов (в данной геометрической схеме длины приемников \mathcal{R}_3 опре-

25

деляются через R, R_1, R_2 по формулам

$$\tilde{O_0} = \frac{\pi}{2} - \theta_{(-N_1)}, \quad R_3 = R_2 \frac{2R}{\sqrt{R_1^2 - R^2}};$$

- ∠₂ характеризует положение центрального луча, принимаемого
 І-м приемником;
- Δ угол между двумя центральными лучами соседних приемников. При вычислении приближенного значения интеграла $E=\mathcal{L}(X_1,X_2)$, тот заменяется на интеграл $Z_{\mathcal{E}}$, который, в свою очередь, приближенно вычисляется по квадратурной формуле вида

$$I_{\mathcal{E}} \approx \sum_{\mathcal{K}_{j}} \propto_{\mathcal{K}_{j}} (X_{1}, X_{2}, \mathcal{E}) f(\rho_{\mathcal{K}_{j}}, \theta_{\mathcal{K}_{j}})$$

(коэффициенты не зависят от функции $\mathcal{F}(X_1,X_2)$ и могут быть рассчитаны с наперед заданной точностью).

Между параметрами алгоритма \mathcal{E} , \mathcal{N} , \mathcal{M} принято следующее экспериментально (проверка на модельных функциях) и теоретически обоснованное согласование:

$$N \approx M$$
. $E \approx M^{-1/3}$,

например
$$\mathcal{M} \approx 8$$
, $\mathcal{N} \approx 10$... 20 $\mathcal{E} = 0, I$... 0,5.

Устойчивость алгоритма к случайным погрешностям анализировалась на модельных функциях, к которым прибавлялись случайные ошибки, равномерно распределеные в интервале $\begin{bmatrix} A-\mathcal{S}A & A+\mathcal{S}A \end{bmatrix}$, где A — истинное значение преобразования Радона, вычисленное в точке $(\mathcal{P},\mathcal{P})$, $\mathcal{S}A$ — процент относительной зашумленности. Из проведенных расчетов видно, что алгоритм достаточно устойчив, когда относительная зашумленность не превосходит 15%.

Технические параметры комплекса: оптический диапазон 350 ...
... IIOO ны; время считывания томографической информации 50...500 мм; количество проекций - 8; пространственное разрешение 0,5х0,5 мм.

Библиографический список

- I. Агринов Ю.М., Антропов А.М., Кулик П.П. и др. //Плаэмохи-мия-87. Ч.2.1987. С. 58-96.
- 2. Антропов А.М., Кулик П.П., Поплевина Л.И., Синягин О.В. и др. Депонир.статъя ВИНИТИ, Москва, 1987, № 5110-887.