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Abstract 

This paper presents the results of an analysis of the necessary propagation conditions in a 
step-index optical fiber with a Kerr nonlinearity of two modes, LP01 and LP11, during the trans-
mission of high-power optical pulses. All results were obtained by solving a system of two non-
linear equations for these modes, obtained by the Gauss approximation method, and the subse-
quent use of a procedure for refining estimates using the mixed finite elements method. The 
necessary conditions are determined, estimates of the boundaries for the range of normalised 
frequencies for which they are fulfilled are obtained, and an approximate formula is proposed 
for estimating the upper limit of this range. 
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Introduction 

In one of the first works [1] devoted to analyzing the 
effect on the mode parameters of changes in the refractive 
index profile of a step-index optical fiber due to Kerr 
nonlinearity, a model of the refractive index profile of 
such a fiber was presented, a numerical solution was 
found for the fundamental mode and calculation data 
were given for the dependencies of the parameters of this 
mode on the normalized frequency of the stepped optical 
fiber and optical power. At the same time, a dependency 
analysis was performed for relatively small values of op-
tical power of up to 0.4 MW. However, the intensive de-
velopment of a technique for forming ultrashort high-
power optical pulses with fiber lasers [2 – 4] and a wide 
range of technologies for their use [5 – 7] means that it is 
important to take nonlinearity into account when determin-
ing the parameters of the modes propagating in optical fi-
bers. From the point of view of analyzing processes and 
modelling the propagation of pulses in an optical fiber, an-
alytical solutions are of particular interest in this regard. 

An analytical solution for the fundamental mode was 
obtained [8, 9] for the above problem by considering it on 
the basis of the Gauss approximation method [10 – 13], 
and the dispersion characteristics of an optical fiber were 
considered for relatively large optical powers. The Gauss 
approximation method is based on an approximation of 
the distribution of the mode field using Laguerre–Gauss 
functions and a search for the parameter of this approxi-
mation (the equivalent radius of the mode spot) providing 
the best approximation. When using this method, it is as-
sumed that the distribution of the mode field is known. 
This allows us to take into account changes in the profile 

of the refractive index due to the action of non-linear fac-
tors, which in turn allows this method to be used to obtain 
analytical expressions for optical fiber mode parameters 
with a given refractive index profile, taking nonlinearity 
into account. 

In previous papers [8, 9, 14], the Gauss approximation 
method was used to obtain analytical solutions for the 
LP01 and LP11 modes of a stepped optical fiber with Kerr 
nonlinearity, given that only one of these modes was dis-
tributed in it. The work investigated the necessary condi-
tions for the excitation of a higher-order mode in a single-
mode stepped optical fiber with Kerr nonlinearity, using 
the Gauss approximation method. At the same time, for a 
multimode optical fiber, a more characteristic feature is 
the excitation and propagation of several modes simulta-
neously. In the present article, the necessary conditions 
are considered for the propagation of two linearly polar-
ized modes, LP01 and LP11, in a stepped optical fiber with 
Kerr nonlinearity, assuming that only these two directed 
modes propagate in the fiber. First, using an approximate 
analytical solution, we find estimates for the parameters 
of the modes, the conditions for the joint propagation of 
these modes in the optical fiber, and the distributions of 
the mode fields. These estimates are calculated by solving 
a system of nonlinear equations obtained for the linearly 
polarized modes LP01 and LP11 of a step-index optical fi-
ber with Kerr nonlinearity, provided that only these two 
modes propagate. Then, using the obtained approxima-
tions for the distributions of the mode fields, the profile 
of the refractive index changed by the Kerr nonlinearity is 
determined, for which the required necessary conditions 
are specified using the method of mixed finite elements. 
This approach is shown to be effective in refining the es-
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timates of the parameters of guided modes of light 
guides. A well-known variant of the mixed finite element 
method and the algorithm for its implementation, de-
scribed in detail in the papers [15], is applied here. 

1. Fundamentals of the Gauss approximation method 

The Gauss approximation is based on a representation 
of the field of a fiber light guide by linearly polarized 
modes, the radial distribution of which is described by 
Laguerre-Gauss functions [12] 
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where Fl,m (r) – is the radial distribution function of the 
mode field of radial ordermand azimuthal order l; l,m – is 
the propagation constant of the mode, of radial order m 
and azimuthal order l; a – is the radius of the core of the 
optical fiber; rl,m – is the equivalent radius of the spot of 
the mode; Rl,m

 = rl,m /a – is the normalized equivalent radi-
us of the mode spot; R = r /a – is the normalized value of 
the radial coordinate; ( ) ( )l

mL y  – is the Laguerre polynomi-
al of order m and l, and argument y; r – is the radial coor-
dinate;  – is the azimuthal coordinate; and z – is the lon-
gitudinal coordinate directed along the fiber axis. 

This representation is valid for weakly guided optical 
fibers for which the propagation constant of a linearly po-
larized mode of radial order m and azimuthal order l can 
be determined from the expression [12, 13]. 
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where n (r) – is the profile of the refractive index of the 
optical fiber; and k – is the propagation constant in free 
space. 

The constant Cl,m, which depends only on the order of 
the mode, is calculated by the formula [13]. 
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For a given profile of the refractive index, an analyti-
cal expression can be obtained for the mode propagation 
constant from (2), after integration. Using the condition 

2
, ,/ 0l m l mR    after differentiation, a characteristic 

equation is then found with respect to the equivalent spot 
radius of the mode [12]. 

2. The model of a refractive index profile  
of optical fiber with a Kerr nonlinearity 

The refraction index profile of a step-index optical fi-
ber, without taking into account the nonlinearity factor, is 
described as follows [12]. 

,

,
( )

,
c

s
c l

n r a
n r

n r a


  

.  

The refractive index profile taking into account the 
Kerr nonlinearity is described by the formula [16]. 
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where n2 is the Kerr nonlinearity parameter, and I (r) is 
the intensity distribution of optical radiation along the fi-
ber’s radius. 

In the case of propagation in the light guide of the two 
modes LP01 and LP11, we can assume that 

2

0,1 1,1
0,1 1,12

0,1 1,1

( ) ( )
( ) Cos

4
m F x F xP

I r q q
R Ra

 
     

, (4) 

where Pm is the power of the optical radiation introduced 
into the light guide; and q0,1, q1,1 are coefficients that take 
into account the distribution of the input power of optical 
radiation between the corresponding modes. 

The equivalent radius of the mode spot is two times 
smaller than the radius of the spot of the corresponding 
mode [17]. Given this, we introduce the notation 
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After substituting (3), (5) into (4), we obtain the fol-
lowing formula for the profile of the refractive index 
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3. The system of nonlinear characteristic equations  
for the equivalent spot radii of the LP01 and LP11 modes 

In general, the system of nonlinear characteristic 
equations for determining the equivalent spot radii of the 
LP01 and LP11 modes of a step-index optical fiber with a 
Kerr nonlinearity, provided that only these two modes 
propagate in the light guide, can be written as [18] 
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where 0 (x0,1, x1,1) and 1 (x0,1, x1,1) = 0 are defined ac-
cording to Table 1 (see Appendix). Here, 2

0,1 0,11/x R  and 
2

1,1 1,11/x R . Using the formula for the normalized fre-
quency 
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2 2 2 2V a k NA , 

we denote 

2 2 2U V NA . 

Expressions in Table 1 of the Appendix completely 
describe a system of characteristic nonlinear equations for 
the equivalent spot radii of the LP01 and LP11 modes of a 
step-index optical fiber with a Kerr nonlinearity, provided 
that only these two modes propagate in the light guide. 

To solve the system of nonlinear equations in (7), we 
use the Newton method [19]. This method has an ad-
vantage for this system of equations, since analytical ex-
pressions can be obtained for the partial derivatives 
0 /x0,1, 0 /x1,1 and 1 /x0,1, 1 /x1,1. These de-
rivatives are defined according to Tables 2 and 3 (see 
Appendix). The solution of the system of nonlinear equa-
tions is found numerically using an iterative process. 

4. Necessary conditions for LP01 and LP11 mode 
propagation in step-index optical fiber  

with Kerr nonlinearity 

Here, as an example, we considered a standard optical 
fiber SMF-28 made of fused silica glass with a step index 
profile with a core diameter of 8.2 μm and a difference in 
the refractive indices of the core and cladding of 0.36% 
[20]. For this optical fiber, according to [21, 22], the non-
linear refractive index was taken equal to 2.5∙10–20 m2/W. 
The spectral dependences of the refractive indices of the 
core and cladding were calculated by the Sellmeier for-
mula according to the algorithm given in [23]. For each 
given power value, by solving the system of nonlinear 
equations (7), we found estimates of the limits of the 
range of normalized frequencies for which this solution 
exists and has physical meaning. The Newton method is 
used to solve these systems of equations, and estimates 
are obtained depending on the optical power introduced 
into the fiber and its distribution between the modes. By 
using the found parameters 2

0,1 0,11/x R  and 2
1,1 1,11/x R , 

the field distributions of the modes under study were cal-
culated according to (1) and (2). Using them and Equa-
tion (6), the profile of the refractive index of the fiber was 
determined, modified by the Kerr nonlinearity. For this 
profile, the estimates of the boundaries of the range of 
normalized frequencies were refined using the mixed fi-
nite elements method mentioned earlier, in which the 
necessary conditions for joint propagation of two consid-
ered modes in the fiber are fulfilled. Fig. 1 shows an ex-
ample of the dependences of the parameters x0,1, x1,1 on 
the normalized frequency of the fiber, for a range of val-
ues for the optical power introduced into the fiber and the 
power evenly distributed between the two studied modes. 

It can be seen from Fig. 1 that the lower limit on the 
normalized frequency range in which there are solutions 
to the system of equations in (7) is practically independ-
ent of the optical power, and is determined by the cutoff 
condition of the highest order mode. With an error of no 

more than 5 % as a result of calculations in all cases 
Vmin

 = 2.405. With increasing power, the upper limit of 
this range shifts to lower normalized frequencies. It is 
natural to assume that the upper limit is due to the self-
focusing effect. It is known that for free space, the critical 
power of self-focusing is approximately determined from 
the relation: 

2

0 22
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where  is a parameter determined by the shape of the 
beam. It is shown here that this relationship can also be 
used for the fundamental mode of a light guide. From (8), 
we can write for a step-index fiber: 
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fV P
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
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Fig. 1. The dependences of the parameters x0,1, x1,1  

on the normalized frequency of the fiber, for a range of values 
for the optical power introduced into the fiber and the power 

evenly distributed between the two studied modes 

This is confirmed by estimates obtained from solving 
the system of equations (7) with the subsequent proce-
dure for clarifying them. Fig. 2 shows the curve for the 
dependencies on the distribution of power between the 
modes of the normalized estimate of the upper limit of 
the studied range of normalized frequencies, obtained 
from the solution of the system of nonlinear equations 
(7), can be represented as  

max 1p fV V q P a . 

Here, it is assumed that q2
 = 1 – q1. 

Fig. 2 shows that if the fraction of the power of the 
fundamental mode exceeds approximately 20 % of the to-
tal power input to the fiber, then the normalized parame-
ter under study is practically independent of the distribu-
tion of power between the modes. In this case, it can be 
assumed that the upper limit of the range is completely 
determined by the conditions of self-focusing of the fun-
damental mode of the fiber. Fig. 3 shows the dependence 
on the power of the fundamental mode of the parameter 
of the normalized frequency range, in which the neces-
sary conditions are fulfilled, where the parameter 



http://www.computeroptics.ru http://www.computeroptics.smr.ru 

536 Computer Optics, 2020, Vol. 44(4)    DOI: 10.18287/2412-6179-CO-699 

max min 1( )p fV V V q P a  .  

 
Fig. 2. The curve for the dependencies on the distribution  
of power between the modes of the normalized estimate  

of the upper limit of the studied range of normalized frequencies 

As shown in Fig. 3, the dependence is almost linear. 

 
Fig. 3. The dependence of the parameter of the normalized 

frequency range on the power of the fundamental mode 

If we assume that the estimated upper limit on the 
range of normalized frequencies for which the necessary 
conditions hold for the joint propagation of the two 
modes (LP01 and LP11) is determined by the conditions of 
self-focusing of the fundamental mode, then from the def-
inition of the normalized frequency of the step-index op-
tical fiber and Equation from Table 1 (see Appendix), we 
have the following approximate relationship: 

1

1 0 2

, 0.2f
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
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Fig. 4 shows the dependence of the estimated upper 
bound of the range of normalized frequencies for which 
the necessary conditions hold for joint propagation of the 
two modes LP01 and LP11 in the optical fiber (the thresh-
old values of the normalized frequency). These are calcu-
lated from (10), depending on the peak power of the fun-
damental mode of the optical fiber, and are obtained by 
solving a system of nonlinear equations (7) and applying 
the subsequent procedure for their refinement. It can be 
seen that the curves are almost the same. This allows us 
to recommend relation (10) to estimate the necessary 
conditions for propagation for the LP01 and LP11 modes in 

a step-index optical fiber with a Kerr nonlinearity during 
the transmission of high-energy optical pulses. 

 
Fig. 4. The dependence of the estimated upper bound  

of the range of normalized frequencies 

Conclusions 

This paper presents the results of an analysis of the 
necessary conditions for propagation in a step-index opti-
cal fiber with a Kerr nonlinearity of two modes, LP01 and 
LP11, during the transmission of high-power optical puls-
es. All results were obtained by solving a system of two 
nonlinear equations for these modes, obtained by the 
Gauss approximation method, and the subsequent use of 
a procedure for refining these estimates using the method 
of mixed finite elements. As a result of this analysis, it 
was shown that the lower limit of the range of normalized 
frequencies for which there are joint solutions for the two 
modes under study is determined by the cutoff of a higher 
order mode, and that its value is 2.405. It is shown that if 
the fraction of the power of the fundamental mode ex-
ceeds 20 % of the total optical power introduced into the 
fiber, the upper limit of the normalized frequency range 
for which there are joint solutions for these two modes is 
determined by the condition of self-focusing of the fun-
damental mode. In this case, the range of normalized fre-
quencies for which the necessary conditions are fulfilled 
decreases almost directly proportionally to the power of 
the fundamental mode. An approximate relationship is 
proposed for estimating the upper limit of the range of 
normalized frequencies for which the necessary condi-
tions are met for the propagation of two LP01 and LP11 
modes in a stepped optical fiber with Kerr nonlinearity 
when transmitting high-power optical pulses. 
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Appendix 

Table 1. Formulas for calculating functions Ψ0 and Ψ1 
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Table 2. Formulas for calculating derivatives of a function Ψ0 
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Table 3. Formulas for calculating derivatives of a function Ψ1 
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